<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

苧麻纖維增強聚乳酸復合材料性能研究

展江湖 王迎宵 楊志浩 李姣 林軍 王桂龍 管延錦

展江湖, 王迎宵, 楊志浩, 李姣, 林軍, 王桂龍, 管延錦. 苧麻纖維增強聚乳酸復合材料性能研究[J]. 工程科學學報, 2021, 43(7): 952-959. doi: 10.13374/j.issn2095-9389.2021.03.02.002
引用本文: 展江湖, 王迎宵, 楊志浩, 李姣, 林軍, 王桂龍, 管延錦. 苧麻纖維增強聚乳酸復合材料性能研究[J]. 工程科學學報, 2021, 43(7): 952-959. doi: 10.13374/j.issn2095-9389.2021.03.02.002
ZHAN Jiang-hu, WANG Ying-xiao, YANG Zhi-hao, LI Jiao, LIN Jun, WANG Gui-long, GUAN Yan-jin. Effect of fiber content on the properties of ramie fiber reinforced poly (lactic acid) composites[J]. Chinese Journal of Engineering, 2021, 43(7): 952-959. doi: 10.13374/j.issn2095-9389.2021.03.02.002
Citation: ZHAN Jiang-hu, WANG Ying-xiao, YANG Zhi-hao, LI Jiao, LIN Jun, WANG Gui-long, GUAN Yan-jin. Effect of fiber content on the properties of ramie fiber reinforced poly (lactic acid) composites[J]. Chinese Journal of Engineering, 2021, 43(7): 952-959. doi: 10.13374/j.issn2095-9389.2021.03.02.002

苧麻纖維增強聚乳酸復合材料性能研究

doi: 10.13374/j.issn2095-9389.2021.03.02.002
基金項目: 國家自然科學基金資助項目(52005299);波音?商飛聯合資助項目(2019-GT-169)
詳細信息
    通訊作者:

    E-mail: lijiao_87@163.com

  • 中圖分類號: TG142.71

Effect of fiber content on the properties of ramie fiber reinforced poly (lactic acid) composites

More Information
  • 摘要: 通過密煉?注塑成型工藝制備了不同苧麻纖維含量的聚乳酸基復合材料,研究了纖維含量對復合材料性能的影響規律,并揭示了纖維增強機理。研究表明,苧麻纖維的添加提高了復合材料的耐熱性能,尤其是當纖維質量分數為40%時,復合材料的熱變形溫度提高了10.5%。此外,苧麻纖維均勻地分散在基體中,由于纖維與聚乳酸的界面強度較弱,斷面上有大量的纖維拔出和纖維孔洞;差示掃描量熱儀測試表明高含量的纖維限制了聚乳酸分子鏈的運動,促進復合材料形成更加致密完善的晶核;同時,流變行為也表明苧麻纖維含量的增加有助于提高復合材料的黏彈響應和復合黏度;最后,苧麻纖維的加入提高了復合材料的拉伸和彎曲強度,且隨纖維含量的增加而增大。與聚乳酸相比,當纖維質量分數為40%時復合材料的拉伸和彎曲強度分別提高了30%和21.9%。

     

  • 圖  1  復合材料拉伸斷口形貌圖。(a)PLA;(b)PLA/10RF;(c)PLA/20RF;(d)PLA/30RF;(d)PLA/40RF

    Figure  1.  Fractured morphologies of: (a) PLA; (b) PLA/10RF; (c) PLA/20RF; (d) PLA/30RF; (e) PLA/40RF

    圖  2  PLA及其復合材料的DSC曲線。(a)二次升溫;(b)一次降溫

    Figure  2.  DSC curves of PLA and its composites: (a) second heating; (b) first cooling

    圖  3  PLA及其復合材料的流變行為。(a)儲存模量;(b)損耗模量;(c)復合黏度

    Figure  3.  Rheological behavior of PLA and its composites: (a) storage modulus; (b) loss modulus; (c) complex viscosity

    圖  4  PLA及其復合材料的熱變形溫度

    Figure  4.  Heat deflection temperature of PLA and its composites

    圖  5  PLA及其復合材料力學性能。(a)應力?應變曲線;(b)拉伸性能; (c)彎曲性能; (d)沖擊強度和斷裂伸長率

    Figure  5.  Mechanical properties of PLA and its composites: (a) carves of stress?strain; (b) tensile properties; (c) flexural properties; (d) impact strength and elongation at break

    表  1  熱變形溫度測試參數

    Table  1.   Test parameters of the heat deflection temperature

    Onset temperature/℃Heating rate/(℃·h?1Applied loading/kgFlexural stress/MPaSpan/mmFlexural deflection/mm
    271200.2011.8640.34
    下載: 導出CSV

    表  2  PLA及其復合材料的熱性能

    Table  2.   Thermal parameters of PLA and its composites

    SamplesSecond heatingFirst coolingCrystallinity
    Tm1/°CTm2/°CΔHm/(J·g?1)Tmc/°Cχc /%
    PLA169.2176.446.96108.450.11
    PLA/10RF168.8175.937.35109.744.29
    PLA/20RF170.2177.029.84107.639.81
    PLA/30RF170.7178.526.67105.540.66
    PLA/40RF170.9178.723.82104.542.37
    下載: 導出CSV

    表  3  PLA及其復合材料力學性能

    Table  3.   Mechanical properties of PLA and its composites

    SamplesTensile strength/
    MPa
    Tensile modulus/
    MPa
    Flexural strength/
    MPa
    Flexural modulus/
    MPa
    Impact strength/
    (kJ·m?2)
    Elongation/%
    PLA55.891012.2981.424172.133.2914.74
    PLA/10RF60.601224.5984.25268.171.836.27
    PLA/20RF64.641427.9387.446219.961.775.16
    PLA/30RF70.421675.3597.197770.961.735.03
    PLA/40RF72.621652.0699.248235.491.604.48
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mochane M J, Mokhena T C, Mokhothu T H, et al. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym Lett, 2019, 13(2): 159 doi: 10.3144/expresspolymlett.2019.15
    [2] Gholampour A, Ozbakkaloglu T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J Mater Sci, 2020, 55(3): 829 doi: 10.1007/s10853-019-03990-y
    [3] Siakeng R, Jawaid M, Ariffin H, et al. Natural fiber reinforced polylactic acid composites: A review. Polym Compos, 2019, 40(2): 446 doi: 10.1002/pc.24747
    [4] Lv Z L, Wu H W, Pei Y M, et al. Improvement of interfacial adhesion and mechanical properties of sisal fiber-reinforced poly(lactic acid) composites with added bisoxazoline. Polym Compos, 2020, 41(5): 1841 doi: 10.1002/pc.25502
    [5] Jariwala H, Jain P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinf Plast Compos, 2019, 38(10): 441 doi: 10.1177/0731684419828524
    [6] Wang Q T, Zhang Y, Liang W K, et al. Improved mechanical properties of the graphene oxide modified bamboo-fiber-reinforced polypropylene composites. Polym Compos, 2020, 41(9): 3615 doi: 10.1002/pc.25648
    [7] Pickering K L, Efendy M G A, Le T M. A review of recent developments in natural fibre composites and their mechanical performance. Composites,Part A, 2016, 83: 98 doi: 10.1016/j.compositesa.2015.08.038
    [8] Debeli D K, Tebyetekerwa M, Hao J, et al. Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing. Polym Compos, 2018, 39(S3): E1867 doi: 10.1002/pc.24844
    [9] Hao M Y, Wu H W. Effect ofin situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polym Compos, 2018, 39: E174 doi: 10.1002/pc.24484
    [10] Wang F, Yang M Q, Zhou S J, et al. Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. J Appl Polym Sci, 2018, 135(15): 46148 doi: 10.1002/app.46148
    [11] Xu H, Liu C Y, Chen C, et al. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97(10): 825 doi: 10.1002/bip.22079
    [12] Yu T, Ren J, Li S M, et al. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites,Part A, 2010, 41(4): 499 doi: 10.1016/j.compositesa.2009.12.006
    [13] Cartier L, Okihara T, Ikada Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer, 2000, 41(25): 8909 doi: 10.1016/S0032-3861(00)00234-2
    [14] Martin O, Avérous L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209 doi: 10.1016/S0032-3861(01)00086-6
    [15] Zhang H H, Ming R H, Yang G S, et al. Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci, 2015, 55(11): 2553 doi: 10.1002/pen.24147
    [16] Orue A, Eceiza A, Arbelaiz A. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo-mechanical properties of poly(lactic acid) composites. Ind Crops Prod, 2018, 118: 321 doi: 10.1016/j.indcrop.2018.03.068
    [17] Yu T, Jiang N, Li Y. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Composites,Part A, 2014, 64: 139 doi: 10.1016/j.compositesa.2014.05.008
    [18] Song Y H, Zheng Q. Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer, 2010, 51(14): 3262 doi: 10.1016/j.polymer.2010.05.018
    [19] Bai J J. Preparation and Properties of Nano-Carbon/Thermoplastic Polyurethane Elastomer Composites [Dissertation]. Taiyuan: North University of China, 2020

    白靜靜. 納米碳/熱塑性聚氨酯彈性體復合材料的制備及性能[學位論文]. 太原: 中北大學, 2020
    [20] Chen S. Research on Dynamic Viscoelastic Properties and Constitutive Relationship of Polymer Materials [Dissertation]. Zhengzhou: Zhengzhou University, 2020

    陳碩. 高聚物注漿材料動態黏彈特性及其本構關系研究[學位論文]. 鄭州: 鄭州大學, 2020
    [21] Xu H J, Fang H G, Bai J, et al. Preparation and characterization of high-melt-strength polylactide with long-chain branched structure through γ-radiation-induced chemical reactions. Ind Eng Chem Res, 2014, 53(3): 1150 doi: 10.1021/ie403669a
    [22] Zhang K Y, Misra M, Mohanty A K. Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustainable Chem Eng, 2014, 2(10): 2345 doi: 10.1021/sc500353v
    [23] Hao M Y, Wu H W, Zhu Z H. In situ reactive interfacial compatibilization of polylactide/sisal fiber biocomposites via melt-blending with an epoxy-functionalized terpolymer elastomer. RSC Adv, 2017, 7(51): 32399 doi: 10.1039/C7RA03513F
    [24] Tábi T, Hajba S, Kovács J G. Effect of crystalline forms (α' and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur Polym J, 2016, 82: 232 doi: 10.1016/j.eurpolymj.2016.07.024
    [25] Harris A M, Lee E C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci, 2008, 107(4): 2246 doi: 10.1002/app.27261
    [26] Jeencham R, Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites,Part B, 2014, 56: 249 doi: 10.1016/j.compositesb.2013.08.012
    [27] Debeli D K, Qin Z, Guo J S. Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. J Nat Fibers, 2018, 15(4): 596 doi: 10.1080/15440478.2017.1349711
    [28] Xu W B, Li Q L, Tian M M. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill. Chin J Eng, 2019, 41(12): 1618

    徐文彬, 李乾龍, 田明明. 聚丙烯纖維加筋固化尾砂強度及變形特性. 工程科學學報, 2019, 41(12):1618
    [29] He L P, Li W J, Chen D C, et al. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites. Mater Des, 2015, 77: 142 doi: 10.1016/j.matdes.2015.03.051
    [30] Orue A, Jauregi A, Unsuain U, et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Composites,Part A, 2016, 84: 186 doi: 10.1016/j.compositesa.2016.01.021
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  3902
  • HTML全文瀏覽量:  213
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-02
  • 網絡出版日期:  2021-04-07
  • 刊出日期:  2021-07-01

目錄

    /

    返回文章
    返回