Effect of fiber content on the properties of ramie fiber reinforced poly (lactic acid) composites
-
摘要: 通過密煉?注塑成型工藝制備了不同苧麻纖維含量的聚乳酸基復合材料,研究了纖維含量對復合材料性能的影響規律,并揭示了纖維增強機理。研究表明,苧麻纖維的添加提高了復合材料的耐熱性能,尤其是當纖維質量分數為40%時,復合材料的熱變形溫度提高了10.5%。此外,苧麻纖維均勻地分散在基體中,由于纖維與聚乳酸的界面強度較弱,斷面上有大量的纖維拔出和纖維孔洞;差示掃描量熱儀測試表明高含量的纖維限制了聚乳酸分子鏈的運動,促進復合材料形成更加致密完善的晶核;同時,流變行為也表明苧麻纖維含量的增加有助于提高復合材料的黏彈響應和復合黏度;最后,苧麻纖維的加入提高了復合材料的拉伸和彎曲強度,且隨纖維含量的增加而增大。與聚乳酸相比,當纖維質量分數為40%時復合材料的拉伸和彎曲強度分別提高了30%和21.9%。Abstract: Natural fiber, as an alternative to synthetic fiber, is of great potential to reinforce composites that are applied in engineering fields such as automotive aerospace, automotive, sports, packaging, medical, and construction due to their renewability, environmental friendliness, high specific strength, and modulus. To realize this potential, ramie fiber reinforced poly (lactic acid) (PLA) composites with different fiber loadings were fabricated by injection molding. The heat deformation temperature, microstructure, crystallization behavior, rheological behavior, and mechanical properties of the composites were also analyzed. Results indicated that the heat resistance of the composites was improved with increased fiber loading. Particularly, the heat deformation temperature of the composites was improved by 10.5% when fiber with mass fraction of 40% was blended into the matrix. In addition, there were numerous fiber pull-outs and holes in the fractured surface due to poor interfacial adhesion between the fibers and PLA. Meanwhile, ramie fibers were uniformly distributed in the matrix when incorporating a low fiber content, but fiber agglomerations occurred in the matrix when introducing a high fiber loading (mass fraction of 40%) because of the poor wettability between the fibers and PLA. Differential scanning calorimetry (DSC) showed that the high fiber loading in the composites restricted the movement of the PLA molecular chain and promoted the formation of the perfect crystal. At the same time, samples with a high content of fiber contributed to the enhancement of the storage modulus, loss modulus, and complex viscosity of the composites due to the fibers’ physical joint in the matrix. Finally, the tensile and flexural strengths of the composites were improved with increased fiber loading. However, when the mass fraction of loading fiber was greater than 30%, the increase of tensile and flexural strengths of the composites was slow due to the weak wettability of the PLA matrix to the fiber. Compared to PLA, the incorporation of fiber with mass fraction of 40% increased the tensile and bending strengths of the composites by 30% and 21.9%, respectively.
-
Key words:
- ramie fiber /
- mechanical properties /
- fiber strengthening /
- microstructure /
- rheological behavior
-
表 1 熱變形溫度測試參數
Table 1. Test parameters of the heat deflection temperature
Onset temperature/℃ Heating rate/(℃·h?1) Applied loading/kg Flexural stress/MPa Span/mm Flexural deflection/mm 27 120 0.201 1.8 64 0.34 表 2 PLA及其復合材料的熱性能
Table 2. Thermal parameters of PLA and its composites
Samples Second heating First cooling Crystallinity Tm1/°C Tm2/°C ΔHm/(J·g?1) Tmc/°C χc /% PLA 169.2 176.4 46.96 108.4 50.11 PLA/10RF 168.8 175.9 37.35 109.7 44.29 PLA/20RF 170.2 177.0 29.84 107.6 39.81 PLA/30RF 170.7 178.5 26.67 105.5 40.66 PLA/40RF 170.9 178.7 23.82 104.5 42.37 表 3 PLA及其復合材料力學性能
Table 3. Mechanical properties of PLA and its composites
Samples Tensile strength/
MPaTensile modulus/
MPaFlexural strength/
MPaFlexural modulus/
MPaImpact strength/
(kJ·m?2)Elongation/% PLA 55.89 1012.29 81.42 4172.13 3.29 14.74 PLA/10RF 60.60 1224.59 84.2 5268.17 1.83 6.27 PLA/20RF 64.64 1427.93 87.44 6219.96 1.77 5.16 PLA/30RF 70.42 1675.35 97.19 7770.96 1.73 5.03 PLA/40RF 72.62 1652.06 99.24 8235.49 1.60 4.48 www.77susu.com -
參考文獻
[1] Mochane M J, Mokhena T C, Mokhothu T H, et al. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym Lett, 2019, 13(2): 159 doi: 10.3144/expresspolymlett.2019.15 [2] Gholampour A, Ozbakkaloglu T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J Mater Sci, 2020, 55(3): 829 doi: 10.1007/s10853-019-03990-y [3] Siakeng R, Jawaid M, Ariffin H, et al. Natural fiber reinforced polylactic acid composites: A review. Polym Compos, 2019, 40(2): 446 doi: 10.1002/pc.24747 [4] Lv Z L, Wu H W, Pei Y M, et al. Improvement of interfacial adhesion and mechanical properties of sisal fiber-reinforced poly(lactic acid) composites with added bisoxazoline. Polym Compos, 2020, 41(5): 1841 doi: 10.1002/pc.25502 [5] Jariwala H, Jain P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J Reinf Plast Compos, 2019, 38(10): 441 doi: 10.1177/0731684419828524 [6] Wang Q T, Zhang Y, Liang W K, et al. Improved mechanical properties of the graphene oxide modified bamboo-fiber-reinforced polypropylene composites. Polym Compos, 2020, 41(9): 3615 doi: 10.1002/pc.25648 [7] Pickering K L, Efendy M G A, Le T M. A review of recent developments in natural fibre composites and their mechanical performance. Composites,Part A, 2016, 83: 98 doi: 10.1016/j.compositesa.2015.08.038 [8] Debeli D K, Tebyetekerwa M, Hao J, et al. Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing. Polym Compos, 2018, 39(S3): E1867 doi: 10.1002/pc.24844 [9] Hao M Y, Wu H W. Effect ofin situ reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polym Compos, 2018, 39: E174 doi: 10.1002/pc.24484 [10] Wang F, Yang M Q, Zhou S J, et al. Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. J Appl Polym Sci, 2018, 135(15): 46148 doi: 10.1002/app.46148 [11] Xu H, Liu C Y, Chen C, et al. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Biopolymers, 2012, 97(10): 825 doi: 10.1002/bip.22079 [12] Yu T, Ren J, Li S M, et al. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites,Part A, 2010, 41(4): 499 doi: 10.1016/j.compositesa.2009.12.006 [13] Cartier L, Okihara T, Ikada Y, et al. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer, 2000, 41(25): 8909 doi: 10.1016/S0032-3861(00)00234-2 [14] Martin O, Avérous L. Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209 doi: 10.1016/S0032-3861(01)00086-6 [15] Zhang H H, Ming R H, Yang G S, et al. Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci, 2015, 55(11): 2553 doi: 10.1002/pen.24147 [16] Orue A, Eceiza A, Arbelaiz A. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo-mechanical properties of poly(lactic acid) composites. Ind Crops Prod, 2018, 118: 321 doi: 10.1016/j.indcrop.2018.03.068 [17] Yu T, Jiang N, Li Y. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Composites,Part A, 2014, 64: 139 doi: 10.1016/j.compositesa.2014.05.008 [18] Song Y H, Zheng Q. Linear viscoelasticity of polymer melts filled with nano-sized fillers. Polymer, 2010, 51(14): 3262 doi: 10.1016/j.polymer.2010.05.018 [19] Bai J J. Preparation and Properties of Nano-Carbon/Thermoplastic Polyurethane Elastomer Composites [Dissertation]. Taiyuan: North University of China, 2020白靜靜. 納米碳/熱塑性聚氨酯彈性體復合材料的制備及性能[學位論文]. 太原: 中北大學, 2020 [20] Chen S. Research on Dynamic Viscoelastic Properties and Constitutive Relationship of Polymer Materials [Dissertation]. Zhengzhou: Zhengzhou University, 2020陳碩. 高聚物注漿材料動態黏彈特性及其本構關系研究[學位論文]. 鄭州: 鄭州大學, 2020 [21] Xu H J, Fang H G, Bai J, et al. Preparation and characterization of high-melt-strength polylactide with long-chain branched structure through γ-radiation-induced chemical reactions. Ind Eng Chem Res, 2014, 53(3): 1150 doi: 10.1021/ie403669a [22] Zhang K Y, Misra M, Mohanty A K. Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustainable Chem Eng, 2014, 2(10): 2345 doi: 10.1021/sc500353v [23] Hao M Y, Wu H W, Zhu Z H. In situ reactive interfacial compatibilization of polylactide/sisal fiber biocomposites via melt-blending with an epoxy-functionalized terpolymer elastomer. RSC Adv, 2017, 7(51): 32399 doi: 10.1039/C7RA03513F [24] Tábi T, Hajba S, Kovács J G. Effect of crystalline forms (α' and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur Polym J, 2016, 82: 232 doi: 10.1016/j.eurpolymj.2016.07.024 [25] Harris A M, Lee E C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci, 2008, 107(4): 2246 doi: 10.1002/app.27261 [26] Jeencham R, Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites,Part B, 2014, 56: 249 doi: 10.1016/j.compositesb.2013.08.012 [27] Debeli D K, Qin Z, Guo J S. Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. J Nat Fibers, 2018, 15(4): 596 doi: 10.1080/15440478.2017.1349711 [28] Xu W B, Li Q L, Tian M M. Strength and deformation properties of polypropylene fiber-reinforced cemented tailings backfill. Chin J Eng, 2019, 41(12): 1618徐文彬, 李乾龍, 田明明. 聚丙烯纖維加筋固化尾砂強度及變形特性. 工程科學學報, 2019, 41(12):1618 [29] He L P, Li W J, Chen D C, et al. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites. Mater Des, 2015, 77: 142 doi: 10.1016/j.matdes.2015.03.051 [30] Orue A, Jauregi A, Unsuain U, et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Composites,Part A, 2016, 84: 186 doi: 10.1016/j.compositesa.2016.01.021 -