-
摘要: 選擇雙相韌化的Ni?Mn?Ga?Ti高溫形狀記憶合金為研究對象。制備了淬火態Ni55Mn25Ga18Ti2高溫形狀記憶合金,并對其在室溫至480 ℃之間進行高達500次的相變熱循環,獲得了5, 10, 50, 100和500次熱循環態樣品。采用X射線衍射、掃描電鏡、能譜儀、同步熱分析儀及室溫壓縮等實驗方法,研究了淬火態和熱循環態合金樣品的微觀組織、相變行為、力學及記憶性能,進而分析其熱循環穩定性。研究結果表明:經500次循環后,Ni55Mn25Ga18Ti2合金相結構和顯微組織未發生明顯變化,均為由非調制四方結構的板條馬氏體相和面心立方富Ni的γ相組成的雙相結構;隨著循環次數增加,馬氏體相變溫度幾乎不變,逆馬氏體相變溫度和相變滯后在循環5次后趨于穩定;抗壓強度及壓縮變形率波動幅度較小;形狀記憶性能下降,但形狀記憶應變仍保持在1.4%以上;Ni55Mn25Ga18Ti2高溫形狀記憶合金顯示出良好的熱循環穩定性。
-
關鍵詞:
- Ni?Mn?Ga?Ti /
- 高溫形狀記憶合金 /
- 熱循環穩定性 /
- 微觀組織 /
- 馬氏體相變
Abstract: Research on high-temperature shape memory alloys has attracted much attention due to the control requirements of the high-temperature drive (>100 ℃) and the overheating warning in high voltage transmissions, nuclear power, aerospace, automotive, oil exploration, and other engineering fields. High-temperature shape memory alloys refer to those with reverse martensitic transformation starting temperature (As) higher than 100 ℃. A wide range of high-temperature shape memory alloys exists, including Ti?Ni?Pd/Pt, Ni?Ti?Hf/Zr, Cu?Al?Ni, Ni?Mn?Ga, Ru-based, β-Ti-based, and Co-based systems. Besides the high transformation temperatures and good mechanical and shape memory properties, the thermal stability of microstructures and properties at high temperatures and after thermal cycling transformations is also an important basis for evaluating the practicability of high-temperature shape memory alloys. Dual-phase Ni?Mn?Ga?Ti high-temperature shape memory alloys were chosen because of their better ductility compared with single-phase Ni?Mn?Ga alloys. In this paper, the as-quenched Ni55Mn25Ga18Ti2 high-temperature shape memory alloy was prepared. Specimens are then thermal-cycled at a temperature between the room temperature and 480 ℃ for 5, 10, 50, 100, and 500 times. The thermal stability of the microstructure, martensitic transformation temperatures, and mechanical and shape memory properties were studied by X-ray diffraction analysis, scanning electron microscopy, simultaneous thermal analyzer, and room-temperature compression analysis. Results show that there are no obvious changes in the phase structure and microstructure of the Ni55Mn25Ga18Ti2 high-temperature shape memory alloy after 500 thermal cycles. All as-quenched and thermal-cycled specimens show dual-phase structures with non-modulated tetragonal martensite and Ni-rich face-centered-cubic γ phase. With the increase of thermal cycling times, the forward martensitic transformation temperatures are almost kept constant, and the reverse martensitic transformation temperatures and the hysteresis are observed to be steady when the thermal cycles exceed five times. After 500 thermal cycles, the compressive strength and compressive stain slightly change, and the shape memory strain drops but remains over 1.4%. The Ni55Mn25Ga18Ti2 high-temperature shape memory alloy shows high thermal cycling stability. -
表 1 Ni55Mn25Ga18Ti2合金經N次循環后馬氏體基體和γ相成分
Table 1. Compositions of the martensite and γ phase of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N
Thermal cycles, N Martensite γ phase Ni Mn Ga Ti Ni Mn Ga Ti 0 53.7 27.2 17.5 1.6 65.1 12.2 11.4 11.3 5 54.9 26.7 16.6 1.8 68.2 12.0 9.3 10.5 10 55.1 26.5 16.6 1.8 68.7 10.5 9.2 11.6 50 56.3 25.6 16.4 1.7 69.1 10.4 9.1 11.4 100 55.5 25.9 16.8 1.8 69.4 9.7 8.9 12.0 500 53.3 27.8 17.1 1.8 68.8 9.5 9.0 12.7 表 2 N次循環后Ni55Mn25Ga18Ti2合金馬氏體相變特征溫度
Table 2. Martensitic transformation temperatures of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N
N Ms /℃ Mp /℃ Mf /℃ As/℃ Ap /℃ Af /℃ Hysteresis/℃ 0 263 251 239 294 327 349 86 5 263 250 239 245 274 297 34 10 267 250 234 253 278 299 32 50 274 251 229 242 278 304 30 100 268 253 228 247 279 301 33 500 265 247 230 246 272 296 31 表 3 Ni55Mn25Ga18Ti2合金N次循環態的抗壓強度和壓縮變形率
Table 3. Compressive fracture strength and strain of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N
N Compressive fracture strength/MPa Compressive fracture strain/% 0 1054 17.2 5 1377 22.3 10 1326 19.4 50 1265 19.2 100 1328 17.3 500 1526 22.8 表 4 Ni55Mn25Ga18Ti2合金N次循環態壓縮至8%預應變時的形狀記憶性能
Table 4. Shape memory properties of the Ni55Mn25Ga18Ti2 alloy compressed to 8% pre-strain after thermal cycles N
N Pre-strain/% Shape memory strain/% Recovery ratio/% 0 8 2.2 64.7 5 8 1.6 42.1 10 8 1.4 43.8 50 8 1.4 43.8 100 8 1.6 44.4 500 8 1.6 50.0 www.77susu.com -
參考文獻
[1] Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084 [2] He Z R, Zhou C, Liu L, et al. Research progress of shape memory alloys and their applications. Foundry Technol, 2017, 38(2): 257賀志榮, 周超, 劉琳, 等. 形狀記憶合金及其應用研究進展. 鑄造技術, 2017, 38(2):257 [3] Ma J, Karaman I, Noebe R D. High temperature shape memory alloys. Int Mater Rev, 2010, 55(5): 257 doi: 10.1179/095066010X12646898728363 [4] Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys. Mater Mech Eng, 2014, 38(1): 1左舜貴, 金學軍, 金明江. 高溫形狀記憶合金的研究進展. 機械工程材料, 2014, 38(1):1 [5] Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull, 2012, 47(10): 2966 doi: 10.1016/j.materresbull.2012.04.118 [6] Rehman S U, Khan M, Khan A N, et al. Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys. Mater Sci Eng A, 2019, 763: 138148 doi: 10.1016/j.msea.2019.138148 [7] Cai W, Meng X L, Zhao X Q, et al. Martensitic transformation and shape memory effect of Ti?Ni based high temperature shape memory alloys. Mater China, 2012, 31(12): 40蔡偉, 孟祥龍, 趙新青, 等. TiNi基高溫形狀記憶合金的馬氏體相變與形狀記憶效應. 中國材料進展, 2012, 31(12):40 [8] Tong Y X, Fan X M, Shuitcev A V, et al. Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. J Alloys Compd, 2020, 845: 156331 doi: 10.1016/j.jallcom.2020.156331 [9] Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys. Mater Rev, 2016, 30(Sup 2): 616馮昭偉, 崔躍, 尚再艷, 等. 鎳鈦鋯高溫形狀記憶合金的研究進展. 材料導報, 2016, 30(增刊2): 616 [10] López-Ferre?o I, Gómez-Cortés J F, Breczewski T, et al. High-temperature shape memory alloys based on the Cu?Al?Ni system: Design and thermomechanical characterization. J Mater Res Technol, 2020, 9(5): 9972 doi: 10.1016/j.jmrt.2020.07.002 [11] Xu H B, Li Y, Jiang C B. Ni?Mn?Ga high-temperature shape memory alloys. Mater Sci Eng A, 2006, 438-440: 1065 doi: 10.1016/j.msea.2006.02.187 [12] Pérez-Checa A, Feuchtwanger J, Barandiaran J M, et al. Ni?Mn?Ga high temperature shape memory alloys: Function stability in β and β+γ regions. J Alloys Compd, 2018, 741: 148 doi: 10.1016/j.jallcom.2018.01.068 [13] Manzoni A M, Denquin A, Vermaut P, et al. Constrained hierarchical twinning in Ru-based high temperature shape memory alloys. Acta Mater, 2016, 111: 283 doi: 10.1016/j.actamat.2016.03.067 [14] Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy. Mater Rep, 2020, 34(3): 148李啟泉, 李巖, 馬悅輝. 鈦基高溫形狀記憶合金進展綜述. 材料導報, 2020, 34(3):148 [15] Buenconsejo P J S, Kim H Y, Hosoda H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater, 2009, 57(4): 1068 doi: 10.1016/j.actamat.2008.10.041 [16] Li Y, Xin Y, Chai L, et al. Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater, 2010, 58(10): 3655 doi: 10.1016/j.actamat.2010.03.001 [17] Jiang H X, Yang S Y, Wang C P, et al. Martensitic transformation and shape memory effects in Co?V?Al alloys at high temperatures. J Alloys Compd, 2019, 786: 648 doi: 10.1016/j.jallcom.2019.01.216 [18] S?derberg O, Aaltio I, Ge Y, et al. Ni?Mn?Ga multifunctional compounds. Mater Sci Eng A, 2008, 481-482: 80 doi: 10.1016/j.msea.2006.12.191 [19] Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater, 2006, 54(1): 233 doi: 10.1016/j.actamat.2005.09.004 [20] Ma Y Q, Jiang C B, Li Y, et al. Study of Ni50+xMn25Ga25?x (x=2?11) as high-temperature shape-memory alloys. Acta Mater, 2007, 55(5): 1533 doi: 10.1016/j.actamat.2006.10.014 [21] Xu H B, Ma Y Q, Jiang C B. A high-temperature shape-memory alloy Ni54Mn25Ga21. Appl Phys Lett, 2003, 82(19): 3206 doi: 10.1063/1.1572540 [22] Chernenko V A, Villa E, Besseghini S, et al. Giant two-way shape memory effect in high-temperature Ni?Mn?Ga single crystal. Phys Procedia, 2010, 10: 94 doi: 10.1016/j.phpro.2010.11.081 [23] Chernenko V A, L’vov V, Pons J, et al. Superelasticity in high-temperature Ni?Mn?Ga alloys. J Appl Phys, 2003, 93(5): 2394 doi: 10.1063/1.1539532 [24] Ma Y Q, Jiang C B, Feng G, et al. Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation. Scr Mater, 2003, 48(4): 365 doi: 10.1016/S1359-6462(02)00450-5 [25] Li Y, Xin Y, Jiang C B, et al. Shape memory effect of grain refined Ni54Mn25Ga21 alloy with high transformation temperature. Scr Mater, 2004, 51(9): 849 doi: 10.1016/j.scriptamat.2004.07.010 [26] Xin Y, Chai L. Effect of Fe addition on the martensitic transformation behavior and mechanical properties of Ni?Mn?Ga shape memory alloys. J Univ Sci Technol Beijing, 2013, 35(8): 1027辛燕, 柴亮. Fe對Ni?Mn?Ga形狀記憶合金相變和力學性能的影響. 北京科技大學學報, 2013, 35(8):1027 [27] Ma Y Q, Yang S Y, Liu Y, et al. The ductility and shape-memory properties of Ni?Mn?Co?Ga high-temperature shape-memory alloys. Acta Mater, 2009, 57(11): 3232 doi: 10.1016/j.actamat.2009.03.025 [28] Ma Y Q, Lai S L, Yang S Y, et al. Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys. Trans Nonferrous Met Soc China, 2011, 21(1): 96 doi: 10.1016/S1003-6326(11)60683-3 [29] Xin Y, Zhou Y. Martensitic transformation and mechanical properties of NiMnGaV high-temperature shape memory alloys. Intermetallics, 2016, 73: 50 doi: 10.1016/j.intermet.2016.03.005 [30] Ma Y Q, Yang S Y, Jin W J, et al. Ni56Mn25?xCuxGa19 (x=0, 1, 2, 4, 8) high-temperature shape-memory alloys. J Alloys Compd, 2009, 471(1-2): 570 doi: 10.1016/j.jallcom.2008.07.016 [31] Zhang X, Liu Q S. A dual-phase Ni?Mn?Ga?Gd high-temperature shape memory alloy with large shape recovery ratio. Rare Met Mater Eng, 2017, 46(9): 2375 doi: 10.1016/S1875-5372(17)30200-X [32] Dong G F, Li X H, Li Y Q, et al. Effect of the Ti content on microstructure and properties of Ni53Mn23.5Ga23.5-xTix ferromagnetic shape memory alloy. Rare Met Mater Eng, 2010, 39(10): 1785董桂馥, 李學慧, 李艷琴, 等. Ti含量對Ni53Mn23.5Ga23.5-xTix鐵磁性形狀記憶合金組織和性能的影響. 稀有金屬材料與工程, 2010, 39(10):1785 [33] Dong G F, Cai W, Gao Z Y. Microstructure and martensitic transformation of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2008, 465(1-2): 173 doi: 10.1016/j.jallcom.2007.10.138 [34] Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2010, 508(1): 47 doi: 10.1016/j.jallcom.2010.04.157 [35] Bai J, Yang Z, Zhao C Y, et al. Martensitic transformation and magnetic properties of NiMnGaTi ferromagnetic shape memory alloy. J Northeast Univ (Nat Sci) , 2019, 40(10): 1398白靜, 楊禛, 趙晨羽, 等. NiMnGaTi鐵磁形狀記憶合金的馬氏體相變和磁性能. 東北大學學報(自然科學版), 2019, 40(10):1398 [36] Wang L. Research on Microstructure of NiMnGa-Based Shape Memory Alloys [Dissertation]. Beijing: North China Electric Power University, 2018王磊. NiMnGa基形狀記憶合金的顯微組織研究[學位論文]. 北京: 華北電力大學(北京), 2018 [37] Zhang X, Sui J H, Yang Z Y, et al. Thermal stability of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy with large reversible strain. Mater Lett, 2014, 123: 250 doi: 10.1016/j.matlet.2014.02.088 [38] Jia H D, Zhou Z J. Research progress in microstructure and service performance of high-strength and corrosion-resistant ODS−FeCrAl alloy, Chin J Eng. DOI: 10.13374/j.issn2095-9389.2020.12.17.005賈皓東, 周張健. 高強度耐腐蝕ODS?FeCrAl 合金微觀結構、力學性能研究進展. 工程科學學報. DOI: 10.13374/j.issn2095-9389.2020.12.17.005 -