<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Ni55Mn25Ga18Ti2高溫形狀記憶合金的熱循環穩定性

辛燕 王福星

辛燕, 王福星. Ni55Mn25Ga18Ti2高溫形狀記憶合金的熱循環穩定性[J]. 工程科學學報, 2022, 44(6): 1020-1026. doi: 10.13374/j.issn2095-9389.2021.02.26.001
引用本文: 辛燕, 王福星. Ni55Mn25Ga18Ti2高溫形狀記憶合金的熱循環穩定性[J]. 工程科學學報, 2022, 44(6): 1020-1026. doi: 10.13374/j.issn2095-9389.2021.02.26.001
XIN Yan, WANG Fu-xing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering, 2022, 44(6): 1020-1026. doi: 10.13374/j.issn2095-9389.2021.02.26.001
Citation: XIN Yan, WANG Fu-xing. Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy[J]. Chinese Journal of Engineering, 2022, 44(6): 1020-1026. doi: 10.13374/j.issn2095-9389.2021.02.26.001

Ni55Mn25Ga18Ti2高溫形狀記憶合金的熱循環穩定性

doi: 10.13374/j.issn2095-9389.2021.02.26.001
基金項目: 中央高校基本科研業務費專項資金資助項目(2018MS019);國家自然科學基金資助項目(51971092)
詳細信息
    通訊作者:

    E-mail: xinyan@ncepu.edu.cn

  • 中圖分類號: TG139.6

Thermal cycling stability of Ni55Mn25Ga18Ti2 high-temperature shape memory alloy

More Information
  • 摘要: 選擇雙相韌化的Ni?Mn?Ga?Ti高溫形狀記憶合金為研究對象。制備了淬火態Ni55Mn25Ga18Ti2高溫形狀記憶合金,并對其在室溫至480 ℃之間進行高達500次的相變熱循環,獲得了5, 10, 50, 100和500次熱循環態樣品。采用X射線衍射、掃描電鏡、能譜儀、同步熱分析儀及室溫壓縮等實驗方法,研究了淬火態和熱循環態合金樣品的微觀組織、相變行為、力學及記憶性能,進而分析其熱循環穩定性。研究結果表明:經500次循環后,Ni55Mn25Ga18Ti2合金相結構和顯微組織未發生明顯變化,均為由非調制四方結構的板條馬氏體相和面心立方富Ni的γ相組成的雙相結構;隨著循環次數增加,馬氏體相變溫度幾乎不變,逆馬氏體相變溫度和相變滯后在循環5次后趨于穩定;抗壓強度及壓縮變形率波動幅度較小;形狀記憶性能下降,但形狀記憶應變仍保持在1.4%以上;Ni55Mn25Ga18Ti2高溫形狀記憶合金顯示出良好的熱循環穩定性。

     

  • 圖  1  Ni55Mn25Ga18Ti2合金經N次循環后X射線衍射圖譜

    Figure  1.  XRD patterns of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    圖  2  Ni55Mn25Ga18Ti2熱循環不同次數掃描電鏡形貌。(a)熱循環前淬火態;(b)5次;(c)10次;(d)50次;(e)100次;(f)500次

    Figure  2.  SEM micrographs of Ni55Mn25Ga18Ti2 alloys with different thermal cycles: (a) original state; (b) 5; (c) 10; (d) 50; (e) 100; (f) 500

    圖  3  Ni55Mn25Ga18Ti2合金經N次熱循環后的差式掃描量熱曲線

    Figure  3.  DSC curves of Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    圖  4  Ni55Mn25Ga18Ti2合金N次循環態的壓縮應力?應變曲線

    Figure  4.  Compressive stress?strain curves of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    圖  5  Ni55Mn25Ga18Ti2合金N次循環態樣品壓縮至8%卸載的應力?應變曲線(虛線代表加熱至Af溫度以上50 ℃所回復的應變)

    Figure  5.  Compressive stress?strain curves with 8% total strain of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N (Dotted line represents the shape memory strain after heating at 50 ℃ above the Af temperature)

    表  1  Ni55Mn25Ga18Ti2合金經N次循環后馬氏體基體和γ相成分

    Table  1.   Compositions of the martensite and γ phase of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    Thermal cycles, NMartensite γ phase
    NiMnGaTi NiMnGaTi
    053.727.217.51.6 65.112.211.411.3
    554.926.716.61.8 68.212.09.310.5
    1055.126.516.61.868.710.59.211.6
    5056.325.616.41.769.110.49.111.4
    10055.525.916.81.869.49.78.912.0
    50053.327.817.11.868.89.59.012.7
    下載: 導出CSV

    表  2  N次循環后Ni55Mn25Ga18Ti2合金馬氏體相變特征溫度

    Table  2.   Martensitic transformation temperatures of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    NMs /℃Mp /Mf /℃As/℃Ap /℃Af /℃Hysteresis/℃
    026325123929432734986
    526325023924527429734
    1026725023425327829932
    5027425122924227830430
    10026825322824727930133
    50026524723024627229631
    下載: 導出CSV

    表  3  Ni55Mn25Ga18Ti2合金N次循環態的抗壓強度和壓縮變形率

    Table  3.   Compressive fracture strength and strain of the Ni55Mn25Ga18Ti2 alloy after thermal cycles N

    NCompressive fracture strength/MPaCompressive fracture strain/%
    0105417.2
    5137722.3
    10132619.4
    50126519.2
    100132817.3
    500152622.8
    下載: 導出CSV

    表  4  Ni55Mn25Ga18Ti2合金N次循環態壓縮至8%預應變時的形狀記憶性能

    Table  4.   Shape memory properties of the Ni55Mn25Ga18Ti2 alloy compressed to 8% pre-strain after thermal cycles N

    NPre-strain/%Shape memory strain/%Recovery ratio/%
    082.264.7
    581.642.1
    1081.443.8
    5081.443.8
    10081.644.4
    50081.650.0
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des, 2014, 56: 1078 doi: 10.1016/j.matdes.2013.11.084
    [2] He Z R, Zhou C, Liu L, et al. Research progress of shape memory alloys and their applications. Foundry Technol, 2017, 38(2): 257

    賀志榮, 周超, 劉琳, 等. 形狀記憶合金及其應用研究進展. 鑄造技術, 2017, 38(2):257
    [3] Ma J, Karaman I, Noebe R D. High temperature shape memory alloys. Int Mater Rev, 2010, 55(5): 257 doi: 10.1179/095066010X12646898728363
    [4] Zuo S G, Jin X J, Jin M J. Research progress in high temperature shape memory alloys. Mater Mech Eng, 2014, 38(1): 1

    左舜貴, 金學軍, 金明江. 高溫形狀記憶合金的研究進展. 機械工程材料, 2014, 38(1):1
    [5] Van Humbeeck J. Shape memory alloys with high transformation temperatures. Mater Res Bull, 2012, 47(10): 2966 doi: 10.1016/j.materresbull.2012.04.118
    [6] Rehman S U, Khan M, Khan A N, et al. Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys. Mater Sci Eng A, 2019, 763: 138148 doi: 10.1016/j.msea.2019.138148
    [7] Cai W, Meng X L, Zhao X Q, et al. Martensitic transformation and shape memory effect of Ti?Ni based high temperature shape memory alloys. Mater China, 2012, 31(12): 40

    蔡偉, 孟祥龍, 趙新青, 等. TiNi基高溫形狀記憶合金的馬氏體相變與形狀記憶效應. 中國材料進展, 2012, 31(12):40
    [8] Tong Y X, Fan X M, Shuitcev A V, et al. Effects of Sc addition and aging on microstructure and martensitic transformation of Ni-rich NiTiHfSc high temperature shape memory alloys. J Alloys Compd, 2020, 845: 156331 doi: 10.1016/j.jallcom.2020.156331
    [9] Feng Z W, Cui Y, Shang Z Y, et al. Development of NiTiZr high temperature shape memory alloys. Mater Rev, 2016, 30(Sup 2): 616

    馮昭偉, 崔躍, 尚再艷, 等. 鎳鈦鋯高溫形狀記憶合金的研究進展. 材料導報, 2016, 30(增刊2): 616
    [10] López-Ferre?o I, Gómez-Cortés J F, Breczewski T, et al. High-temperature shape memory alloys based on the Cu?Al?Ni system: Design and thermomechanical characterization. J Mater Res Technol, 2020, 9(5): 9972 doi: 10.1016/j.jmrt.2020.07.002
    [11] Xu H B, Li Y, Jiang C B. Ni?Mn?Ga high-temperature shape memory alloys. Mater Sci Eng A, 2006, 438-440: 1065 doi: 10.1016/j.msea.2006.02.187
    [12] Pérez-Checa A, Feuchtwanger J, Barandiaran J M, et al. Ni?Mn?Ga high temperature shape memory alloys: Function stability in β and β+γ regions. J Alloys Compd, 2018, 741: 148 doi: 10.1016/j.jallcom.2018.01.068
    [13] Manzoni A M, Denquin A, Vermaut P, et al. Constrained hierarchical twinning in Ru-based high temperature shape memory alloys. Acta Mater, 2016, 111: 283 doi: 10.1016/j.actamat.2016.03.067
    [14] Li Q Q, Li Y, Ma Y H. Research progress of titanium-based high-temperature shape memory alloy. Mater Rep, 2020, 34(3): 148

    李啟泉, 李巖, 馬悅輝. 鈦基高溫形狀記憶合金進展綜述. 材料導報, 2020, 34(3):148
    [15] Buenconsejo P J S, Kim H Y, Hosoda H, et al. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater, 2009, 57(4): 1068 doi: 10.1016/j.actamat.2008.10.041
    [16] Li Y, Xin Y, Chai L, et al. Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater, 2010, 58(10): 3655 doi: 10.1016/j.actamat.2010.03.001
    [17] Jiang H X, Yang S Y, Wang C P, et al. Martensitic transformation and shape memory effects in Co?V?Al alloys at high temperatures. J Alloys Compd, 2019, 786: 648 doi: 10.1016/j.jallcom.2019.01.216
    [18] S?derberg O, Aaltio I, Ge Y, et al. Ni?Mn?Ga multifunctional compounds. Mater Sci Eng A, 2008, 481-482: 80 doi: 10.1016/j.msea.2006.12.191
    [19] Karaca H E, Karaman I, Basaran B, et al. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater, 2006, 54(1): 233 doi: 10.1016/j.actamat.2005.09.004
    [20] Ma Y Q, Jiang C B, Li Y, et al. Study of Ni50+xMn25Ga25?x (x=2?11) as high-temperature shape-memory alloys. Acta Mater, 2007, 55(5): 1533 doi: 10.1016/j.actamat.2006.10.014
    [21] Xu H B, Ma Y Q, Jiang C B. A high-temperature shape-memory alloy Ni54Mn25Ga21. Appl Phys Lett, 2003, 82(19): 3206 doi: 10.1063/1.1572540
    [22] Chernenko V A, Villa E, Besseghini S, et al. Giant two-way shape memory effect in high-temperature Ni?Mn?Ga single crystal. Phys Procedia, 2010, 10: 94 doi: 10.1016/j.phpro.2010.11.081
    [23] Chernenko V A, L’vov V, Pons J, et al. Superelasticity in high-temperature Ni?Mn?Ga alloys. J Appl Phys, 2003, 93(5): 2394 doi: 10.1063/1.1539532
    [24] Ma Y Q, Jiang C B, Feng G, et al. Thermal stability of the Ni54Mn25Ga21 Heusler alloy with high temperature transformation. Scr Mater, 2003, 48(4): 365 doi: 10.1016/S1359-6462(02)00450-5
    [25] Li Y, Xin Y, Jiang C B, et al. Shape memory effect of grain refined Ni54Mn25Ga21 alloy with high transformation temperature. Scr Mater, 2004, 51(9): 849 doi: 10.1016/j.scriptamat.2004.07.010
    [26] Xin Y, Chai L. Effect of Fe addition on the martensitic transformation behavior and mechanical properties of Ni?Mn?Ga shape memory alloys. J Univ Sci Technol Beijing, 2013, 35(8): 1027

    辛燕, 柴亮. Fe對Ni?Mn?Ga形狀記憶合金相變和力學性能的影響. 北京科技大學學報, 2013, 35(8):1027
    [27] Ma Y Q, Yang S Y, Liu Y, et al. The ductility and shape-memory properties of Ni?Mn?Co?Ga high-temperature shape-memory alloys. Acta Mater, 2009, 57(11): 3232 doi: 10.1016/j.actamat.2009.03.025
    [28] Ma Y Q, Lai S L, Yang S Y, et al. Ni56Mn25-xCrxGa19 (x=0, 2, 4, 6) high temperature shape memory alloys. Trans Nonferrous Met Soc China, 2011, 21(1): 96 doi: 10.1016/S1003-6326(11)60683-3
    [29] Xin Y, Zhou Y. Martensitic transformation and mechanical properties of NiMnGaV high-temperature shape memory alloys. Intermetallics, 2016, 73: 50 doi: 10.1016/j.intermet.2016.03.005
    [30] Ma Y Q, Yang S Y, Jin W J, et al. Ni56Mn25?xCuxGa19 (x=0, 1, 2, 4, 8) high-temperature shape-memory alloys. J Alloys Compd, 2009, 471(1-2): 570 doi: 10.1016/j.jallcom.2008.07.016
    [31] Zhang X, Liu Q S. A dual-phase Ni?Mn?Ga?Gd high-temperature shape memory alloy with large shape recovery ratio. Rare Met Mater Eng, 2017, 46(9): 2375 doi: 10.1016/S1875-5372(17)30200-X
    [32] Dong G F, Li X H, Li Y Q, et al. Effect of the Ti content on microstructure and properties of Ni53Mn23.5Ga23.5-xTix ferromagnetic shape memory alloy. Rare Met Mater Eng, 2010, 39(10): 1785

    董桂馥, 李學慧, 李艷琴, 等. Ti含量對Ni53Mn23.5Ga23.5-xTix鐵磁性形狀記憶合金組織和性能的影響. 稀有金屬材料與工程, 2010, 39(10):1785
    [33] Dong G F, Cai W, Gao Z Y. Microstructure and martensitic transformation of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2008, 465(1-2): 173 doi: 10.1016/j.jallcom.2007.10.138
    [34] Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni?Mn?Ga?Ti ferromagnetic shape memory alloys. J Alloys Compd, 2010, 508(1): 47 doi: 10.1016/j.jallcom.2010.04.157
    [35] Bai J, Yang Z, Zhao C Y, et al. Martensitic transformation and magnetic properties of NiMnGaTi ferromagnetic shape memory alloy. J Northeast Univ (Nat Sci), 2019, 40(10): 1398

    白靜, 楊禛, 趙晨羽, 等. NiMnGaTi鐵磁形狀記憶合金的馬氏體相變和磁性能. 東北大學學報(自然科學版), 2019, 40(10):1398
    [36] Wang L. Research on Microstructure of NiMnGa-Based Shape Memory Alloys [Dissertation]. Beijing: North China Electric Power University, 2018

    王磊. NiMnGa基形狀記憶合金的顯微組織研究[學位論文]. 北京: 華北電力大學(北京), 2018
    [37] Zhang X, Sui J H, Yang Z Y, et al. Thermal stability of Ni54Mn25Ga20.9Gd0.1 high-temperature shape memory alloy with large reversible strain. Mater Lett, 2014, 123: 250 doi: 10.1016/j.matlet.2014.02.088
    [38] Jia H D, Zhou Z J. Research progress in microstructure and service performance of high-strength and corrosion-resistant ODS−FeCrAl alloy, Chin J Eng. DOI: 10.13374/j.issn2095-9389.2020.12.17.005

    賈皓東, 周張健. 高強度耐腐蝕ODS?FeCrAl 合金微觀結構、力學性能研究進展. 工程科學學報. DOI: 10.13374/j.issn2095-9389.2020.12.17.005
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  550
  • HTML全文瀏覽量:  473
  • PDF下載量:  42
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-02-26
  • 網絡出版日期:  2021-04-07
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回