Evolution characteristics of mesoscopic pore structure of weathered crust elution-deposited rare earth ore under solution seepage
-
摘要: 為研究風化殼淋積型稀土礦浸出過程中溶液滲流作用對孔隙結構的影響,以去離子水為溶浸液開展浸礦實驗。對浸出前后礦樣進行顯微CT掃描,獲取了試樣內部結構圖像,利用閾值分割算法得到了浸出前后稀土礦樣的孔隙結構圖像。進而,研究了溶液滲流作用下試樣孔隙結構的變化特征,分析了滲流作用對試樣孔隙率、孔隙體積、孔隙長度、孔隙寬度和孔隙方位角等參數的影響。結果表明:稀土礦孔隙形狀和尺寸在滲流作用下發生顯著變化,且在粗細顆粒接觸區最為明顯;溶液滲流作用使得稀土礦孔隙率增大,孔隙總數量減少,孔隙總體積增大。滲流作用下礦樣中小孔隙數量減少,大孔隙數量增多,各尺寸區間的孔隙數量變化率隨孔隙尺寸的增大呈現先增大后減小的趨勢。溶液滲流作用下孔隙長寬比分布更加集中,孔隙方位角在各角度區間的分布更加均勻,孔隙各向異性增強。Abstract: In-situ leaching is extensively used in the mining industry to recover rare earths from weathered crust elution-deposited rare earth ore. In the leaching system, the pore structure of rare earth ore is one of the most important factors that influence the leaching performance. A small column leaching experiment was performed with deionized water as a leaching solution to study the effect of solution seepage on pore structure evolution characteristics in the leaching process of weathering crust eluviation rare earth ore. Micro-computed tomography (micro-CT) was performed on the ore sample before and after leaching, and internal structure images of the sample were obtained. The pore structures of the rare earth ore sample were obtained using the threshold segmentation algorithm. The variation characteristics of pore structure of a rare earth ore sample under the action of solution seepage were then studied, and the effects of solution seepage on sample porosity, pore volume, length, width, azimuthal angle, and other parameters were analyzed. The results show that the pore shape and size of rare earth ore change significantly due to solution seepage, most notably in the contact area of the coarse and fine particles. The solution seepage increases the porosity of rare earth ore, decreases the total number of pores, and increases the total volume of pores. Besides, the number of small and medium-sized pores decreases, while the number of large pores increases due to seepage. The change rate of the number of pores in each size interval increases and then decreases as pore size increases. Compared with the initial state, the distribution of pore aspect ratio is more concentrated after the solution seepage. Moreover, the distribution of pore azimuthal angle is more uniform, and the anisotropy of pore structure is enhanced by solution seepage.
-
圖 9 浸出前后孔隙率變化特征。(a)分區示意圖;(b)不同區域孔隙率;(c)試樣不同高度各區域孔隙率增加率
Figure 9. Porosity variation characteristics of the sample before and after leaching: (a) diagram of regional division; (b) porosity of different regions of the sample; (c) porosity increase rate of different regions at different heights of the sample
表 1 浸出前后不同體積孔隙數量統計結果
Table 1. Statistical result of the number of pores with different volume sizes
Pore volume/mm3 10?6?10?5 10?5?10?4 10?4?10?3 10?3?10?2 10?2?10?1 10?1?100 100?101 101?103 Total The number of pores before leaching 30187 121818 93226 17208 1401 98 6 2 263946 The number of pores after leaching 7155 42762 70764 31437 4260 353 18 2 156751 The change in the number of pores ?23032 ?79056 ?22462 14229 2859 255 12 0 ?107195 表 2 浸出前后不同長寬比孔隙數量統計結果
Table 2. Statistical result of the number of pores with different aspect ratios
Aspect ratio 1 1?2 2?3 3?4 4?5 5?6 6?7 7?8 8?9 9?10 The number of pores before leaching 14171 163522 78077 7551 545 65 11 3 0 1 The number of pores after leaching 3123 104309 44409 4543 327 35 3 1 1 0 The change in the number of pores ?11048 ?59213 ?33668 ?3008 ?218 ?30 ?8 ?2 1 ?1 Rate of change in the number of pores/% ?77.96 ?36.21 ?43.12 ?39.84 ?40.00 ?46.15 ?72.73 ?66.67 ∞ ?100 www.77susu.com -
參考文獻
[1] Goodenough K M, Wall F, Merriman D. The rare earth elements: Demand, global resources, and challenges for resourcing future generations. Nat Resour Res, 2018, 27(2): 201 doi: 10.1007/s11053-017-9336-5 [2] Nie W R, Zhang R, He Z Y, et al. Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2020, 193: 105295 doi: 10.1016/j.hydromet.2020.105295 [3] Tang J, Qiao J Y, Xue Q, et al. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA. Chemosphere, 2018, 199: 160 doi: 10.1016/j.chemosphere.2018.01.170 [4] Huang X W, Long Z Q, Li H W, et al. Development of rare earth hydrometallurgy technology in China. J Rare Earths, 2005, 23(1): 1 [5] Tian J, Yin J Q, Chen K H, et al. Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore. Hydrometallurgy, 2010, 103(1-4): 211 doi: 10.1016/j.hydromet.2010.04.003 [6] Xiao Y F, Huang L, Long Z Q, et al. Adsorption ability of rare earth elements on clay minerals and its practical performance. J Rare Earths, 2016, 34(5): 543 doi: 10.1016/S1002-0721(16)60060-1 [7] He Z Y, Zhang Z Y, Chi R A, et al. Leaching hydrodynamics of weathered elution-deposited rare earth ore with ammonium salts solution. J Rare Earths, 2017, 35(8): 824 doi: 10.1016/S1002-0721(17)60982-7 [8] Zhou F, Liu Q, Feng J, et al. Role of initial moisture content on the leaching process of weathered crust elution-deposited rare earth ores. Sep Purif Technol, 2019, 217: 24 doi: 10.1016/j.seppur.2019.02.010 [9] Yin S H, Chen X, Liu C, et al. Effects of ore size distribution on the pore structure characteristics of packed ore beds. Chin J Eng, 2020, 42(8): 972尹升華, 陳勛, 劉超, 等. 礦石顆粒級配對堆浸體系三維孔隙結構的影響. 工程科學學報, 2020, 42(8):972 [10] Chi R A, Liu X M. Prospect and development of weathered crust elution-deposited rare earth ore. J Chin Soc Rare Earths, 2019, 37(2): 129池汝安, 劉雪梅. 風化殼淋積型稀土礦開發的現狀及展望. 中國稀土學報, 2019, 37(2):129 [11] Yin S H, Qi Y, Xie F F, et al. Porosity characteristic of leaching weathered crust elution-deposited rare earth before and after leaching. Chin J Nonferrous Met, 2018, 28(10): 2112尹升華, 齊炎, 謝芳芳, 等. 風化殼淋積型稀土礦浸出前后孔隙結構特性. 中國有色金屬學報, 2018, 28(10):2112 [12] Zhao K, Zhuo Y L, Wang X J, et al. Aggregate evolution mechanism during ion-adsorption rare earth ore leaching. Adv Mater Sci Eng, 2018, 2018: 1 [13] Wang X J, Li Y X, Huang G L, et al. Changes of pore structure in leaching ion-adsorption type rare earth ore. J Chin Soc Rare Earths, 2017, 35(4): 528王曉軍, 李永欣, 黃廣黎, 等. 浸礦過程離子型稀土礦孔隙結構演化規律研究. 中國稀土學報, 2017, 35(4):528 [14] Liu D F, Zhang Z Y, Chi R A. Microscopic seepage mechanism during in situ leaching of weathered crust elution-deposited rare earth ores. Chin Rare Earths, 2020, 41(4): 1劉德峰, 張臻悅, 池汝安. 風化殼淋積型稀土礦原地浸出微觀滲流機制. 稀土, 2020, 41(4):1 [15] Xie F F, Yin S H, Yuan C L, et al. Study on the influence mechanism of leaching solution on pore of ionic rare earth ore. Chin Rare Earths, 2018, 39(6): 48謝芳芳, 尹升華, 袁長林, 等. 浸礦液對離子型稀土礦孔隙影響機制研究. 稀土, 2018, 39(6):48 [16] Zhou L B, Wang X J, Zhuo Y L, et al. Dynamic pore structure evolution of the ion adsorbed rare earth ore during the ion exchange process. Royal Soc Open Sci, 2019, 6(11): 191107 doi: 10.1098/rsos.191107 [17] Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth Sci Rev, 2013, 123: 1 doi: 10.1016/j.earscirev.2013.04.003 [18] Dhawan N, Safarzadeh M S, Miller J D, et al. Recent advances in the application of X-ray computed tomography in the analysis of heap leaching systems. Miner Eng, 2012, 35: 75 doi: 10.1016/j.mineng.2012.03.033 [19] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3):328 [20] Yang Y, Yang Y S, Gao X Y, et al. Microstructure evolution of low-grade chalcopyrite ores in chloride leaching - A synchrotron-based X-ray CT approach combined with a data-constrained modelling (DCM). Hydrometallurgy, 2019, 188: 1 doi: 10.1016/j.hydromet.2019.06.004 [21] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011 [22] Chang D S, Zhang L M. Extended internal stability criteria for soils under seepage. Soils Found, 2013, 53(4): 569 doi: 10.1016/j.sandf.2013.06.008 [23] Zhuo Y L, Wang X J, Cao S R, et al. Study on relationship between pore structure and strength weakening of rare earth ore under seepage. Gold Sci Technol, 2017, 25(5): 101 doi: 10.11872/j.issn.1005-2518.2017.05.101卓毓龍, 王曉軍, 曹世榮, 等. 滲流作用下稀土礦孔隙結構與強度弱化關系研究. 黃金科學技術, 2017, 25(5):101 doi: 10.11872/j.issn.1005-2518.2017.05.101 [24] Liu D F, Zhang Z Y, Chi R A, et al. Experimental study on the influence of particle size on the strength characteristics of weathered crust elution-deposited rare earth ores. Nonferrous Met Eng, 2020, 10(6): 97 doi: 10.3969/j.issn.2095-1744.2020.06.015劉德峰, 張臻悅, 池汝安, 等. 粒徑對風化殼淋積型稀土礦強度特性影響的實驗研究. 有色金屬工程, 2020, 10(6):97 doi: 10.3969/j.issn.2095-1744.2020.06.015 [25] Cao Z X, Han X D, Zhao S H, et al. Experimental study on the effect of moisture content on shear strength of unsaturated sandy soil. J Henan Polytech Univ Nat Sci, 2019, 38(5): 159曹志翔, 韓憲東, 趙素華, 等. 含水率對非飽和砂土抗剪強度影響試驗研究. 河南理工大學學報(自然科學版), 2019, 38(5):159 [26] Kouakou N M, Cuisinier O, Masrouri F. Estimation of the shear strength of coarse-grained soils with fine particles. Transp Geotech, 2020, 25: 100407 doi: 10.1016/j.trgeo.2020.100407 [27] Cheng K, Wang Y, Yang Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotech, 2018, 100: 30 doi: 10.1016/j.compgeo.2018.04.004 [28] Yuan J P, Zhan B, Chen S C, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed. J Water Resour Archit Eng, 2013, 11(2): 98 doi: 10.3969/j.issn.1672-1144.2013.02.023袁俊平, 詹斌, 陳勝超, 等. 含水率和壓實度對路基填土力學特性的影響. 水利與建筑工程學報, 2013, 11(2):98 doi: 10.3969/j.issn.1672-1144.2013.02.023 [29] Wei Y N, Fan W, Yu B, et al. Characterization and evolution of three-dimensional microstructure of Malan loess. CATENA, 2020, 192: 104585 doi: 10.1016/j.catena.2020.104585 [30] ?nan Sezer G, Ramyar K, Karasu B, et al. Image analysis of sulfate attack on hardened cement paste. Mater Des, 2008, 29(1): 224 doi: 10.1016/j.matdes.2006.12.006 [31] Kong L Y, Ostadhassan M, Hou X D, et al. Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS. J Petroleum Sci Eng, 2019, 175: 1039 doi: 10.1016/j.petrol.2019.01.050 -