Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings
-
摘要: 為揭示各種行波磁場鑄流攪拌的電磁冶金效果,基于計算域分段法建立了斷面1280 mm×200 mm板坯連鑄電磁、流動、傳熱和凝固的耦合模型,利用電氣參數和磁感應強度的實測值和預測值的對比驗證了模型的可靠性。研究表明:行波磁場攪拌器因電磁推力的方向性特點在板坯二冷區攪拌過程中均表現有不同程度與特征的端部效應,輥后箱式攪拌器(Box-typed electromagnetic stirrer, B-EMS)的單側安裝形式導致板坯內弧側磁感應強度遠大于外弧側,輥式攪拌器(Roller-typed electromagnetic stirrer, R-EMS)的對輥安裝形式則使磁感應強度呈現對稱分布。在400 kW和7 Hz的相同電氣參數下,R-EMS的電流強度比B-EMS高75 A;盡管箱式電磁攪拌的有效作用區域較輥式電磁攪拌大,鑄坯中心鋼液過熱耗散區域大,但輥式攪拌推動鋼液沖刷凝固前沿形核作用則明顯大于箱式攪拌。兩者均具有較好的抑制柱狀晶生長、促進凝固前沿等軸晶形核與發展的能力,將不銹鋼板坯等軸晶率提高至45%的門檻值以上,其中間隔型反向輥式攪拌器下的等軸晶率比箱式攪拌高約17%。綜合表明,基于行波磁場鑄流攪拌的間隔型反向輥式攪拌器有望更好地消除鐵素體不銹鋼板材表面皺折缺陷。Abstract: Electromagnetic stirring of strands by a traveling-wave magnetic field is a cutting-edge continuous casting technology for eliminating the columnar crystal structure that tends to develop in stainless- and/or silicon-steel slab castings. The common ridging defect on the surface of ferritic stainless strip products has been found to be closely related to the well-developed as-cast columnar crystal structure. To explore the various electromagnetic properties of the traveling-wave magnetic fields applied to the secondary cooling zone of a slab casting strand, we used the segmented computational domain method to develop a coupled math model to analyze the electromagnetic, fluid flow, heat transfer, and solidification behaviors, which had been previously determined in an electromagnetic measurement experiment to be a valid approach. The modeling analysis results regarding the traveling-wave magnetic fields show that molten steel stirring has some effect on the end of the slab strand. We also found that the intensity of the magnetic induction when using a box-type electromagnetic stirrer (B-EMS) is much greater on the inside of the strand than on the outside, as compared with its symmetric behavior when applying a roller-type electromagnetic stirrer (R-EMS). At an electrical power of 400 kW and frequency of 7 Hz, the current intensity of the R-EMS is higher than that of the B-EMS by 75 A, achieving a more efficient stirring effect for promoting equiaxed crystal nucleation in front of the solidified shell. In casting experiments in a stainless-steel slab caster, both the B-EMS and R-EMS are found to inhibit the growth of columnar crystals through nucleation of the heads of the dendrites, which realizes an equiaxed crystal ratio of the slab casting 45% higher than its threshold value. In addition, an R-MES with two pairs of rollers using inverse thrust EMS forces can produce an equiaxed crystal ratio 17% higher than that achieved by the B-EMS, and can thus be used in the casting production of ferritic stainless steels to obtain final strip products with no ridging defects.
-
表 1 1Cr17鐵素體不銹鋼主要化學成分(質量分數)
Table 1. Chemical composition of 1Cr17 stainless steel
% C Cr Ni Mn P S Si ≤0.12 17 ≤0.6 ≤1.25 ≤0.035 ≤0.03 ≤0.75 表 2 計算用1Cr17不銹鋼熱物性參數和連鑄工藝參數
Table 2. Parameter values of 1Cr17 stainless-steel thermophysical properties and continuous casting practice
Parameters Value Parameters Value Slab cross section/mm2 1280×200 Liquidus temperature/K 1768 Distance to meniscus of B-EMS/m 4.0 Solidus temperature/K 1703 Distance to meniscus of R-EMS/m 3.8, 4.09, and 5.2 Specific heat/(J·kg?1·K?1) 720 Relative permeability of each material 1 Latent heat of solidification/(J·kg?1) 272000 Relative permeability of iron core 1000 Superheat degree/K 30 Conductivity of molten steel/(S·m?1) 7.14×105 Molten steel density/(kg·m?3) 7200 Specific water flow/(L·kg?1) 0.4 Molten steel viscosity/(kg·m?1·s?1) 0.0055 Casting speed/(m·min?1) 0.9 Thermal conductivity of molten steel/(W·m?1·K?1) 32 www.77susu.com -
參考文獻
[1] Kang X F. Ferritic Stainless Steel. Beijing: Metallurgical Industry Press, 2012康喜范. 鐵素體不銹鋼. 北京: 冶金工業出版社, 2012 [2] Hunter A, Ferry M. Texture enhancement by inoculation during casting of ferritic stainless steel strip. Metall Mater Trans A, 2002, 33: 1499 doi: 10.1007/s11661-002-0072-y [3] Hamada J I, Matsumoto Y, Fudanoki F, et al. Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets. ISIJ Int, 2003, 43(12): 1989 doi: 10.2355/isijinternational.43.1989 [4] Hirata N, Ota H, Kato Y, et al. Change in the orientation of equiaxed and columnar grains of 16%Cr steels during hot rolling. Tetsu-to-Hagane, 2003, 89(8): 855 doi: 10.2355/tetsutohagane1955.89.8_855 [5] Modak P, Patra S, Mitra R, et al. Effect of starting as-cast structure on the microstructure-texture evolution during subsequent processing and finally ridging behavior of ferritic stainless steel. Metall Mater Trans A, 2018, 49(6): 2219 doi: 10.1007/s11661-018-4566-7 [6] Chang Z S, Zhang Q Y, Yang K Z, et al. Effects of continuous casting process parameters on central equiaxed crystal ratio of oriented silicon steel slab. China Metall, 2020, 30(1): 58常正昇, 張喬英, 楊克枝, 等. 板坯連鑄工藝參數對取向硅鋼鑄坯中心等軸晶率的影響. 中國冶金, 2020, 30(1):58 [7] Kong W, Chen Y F, Cang D Q. Application of second-cooling electromagnetic stirring in high-silicon electrical steel continuous casting. Foundry Technol, 2018, 39(11): 2566孔為, 陳迎鋒, 蒼大強. 高硅電工鋼連鑄二冷電磁攪拌應用研究. 鑄造技術, 2018, 39(11):2566 [8] Burden M H, Hunt J D. The extent of the eutectic range. J Cryst Growth, 1974, 22(4): 328 doi: 10.1016/0022-0248(74)90178-X [9] Itoh Y, Okajima T, Tashiro K. Refining of solidification structures of type 430 stainless steel by vibration method. Tetsu-to-Hagane, 1980, 66(8): 1093 doi: 10.2355/tetsutohagane1955.66.8_1093 [10] Takeuchi H, Mori H, Ikehara Y, et al. The effects of electromagnetic stirring on cast structure of continuously cast SUS 430 stainless steel slabs. Tetsu-to-Hagane, 1980, 66(6): 638 doi: 10.2355/tetsutohagane1955.66.6_638 [11] Takeuchi H, Ikehara Y, Yanai T, et al. Quality improvement of continuously cast stainless steel blooms through electromagnetic stirring. Tetsu-to-Hagane, 1977, 63(8): 1287 doi: 10.2355/tetsutohagane1955.63.8_1287 [12] Ujiie Y, Maede H, Itoh Y, et al. Improving solidification structure of continuously cast steel by electromagnetic stirring. Tetsu-to-Hagane, 1981, 67(8): 1297 doi: 10.2355/tetsutohagane1955.67.8_1297 [13] Kodukula S, Pet?j?j?rvi M, Savolainen J, et al. Influence of calcium treatment and electromagnetic stirring on ridging in dual-stabilized ferritic stainless steels. Steel Res Int, 2021, 92(2): 2000445 doi: 10.1002/srin.202000445 [14] Kunstreich S. Electromagnetic stirring of slabs. Iron Steel, 2005, 40(9): 81 doi: 10.3321/j.issn:0449-749X.2005.09.020Kunstreich S. 板坯連鑄的電磁攪拌. 鋼鐵, 2005, 40(9):81 doi: 10.3321/j.issn:0449-749X.2005.09.020 [15] Barna M, Javurek M, Wimmer P. Numeric simulation of the steel flow in a slab caster with a box-type electromagnetic stirrer. Steel Res Int, 2020, 91(11): 2000067 doi: 10.1002/srin.202000067 [16] Xiao H, Wang P, Yi B, et al. A numerical and experimental study on the solidification structure of Fe–Cr–Ni steel slab casting by roller electromagnetic stirring. Metals, 2021, 11(1): 6 [17] Zhang K, Chen S F, Yang B, et al. Study on arrangement of S-EMS rollers in secondary cooling zone of slab continuous casting machine. J Univ Sci Technol Liaoning, 2018, 41(5): 335張開, 陳士富, 楊濱, 等. 板坯二冷區電磁攪拌輥布置方式. 遼寧科技大學學報, 2018, 41(5):335 [18] Aboutalebi M R, Guthrie R I L, Seyedein S H. Mathematical modeling of coupled turbulent flow and solidification in a single belt caster with electromagnetic brake. Appl Math Model, 2007, 31(8): 1671 doi: 10.1016/j.apm.2006.05.012 [19] Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Tran, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7 [20] Zhang Z, Wang P, Dong Y N, et al. Study on three-dimensional flow and heat transfer and solidification behavior in slab continuous casting process. Continuous Cast, 2019, 44(6): 41張壯, 王璞, 董延楠, 等. 板坯全鑄流三維流動和傳熱凝固行為研究. 連鑄, 2019, 44(6):41 [21] Li S X, Wang P, Zhang J Q, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748李少翔, 王璞, 張家泉, 等. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為. 工程科學學報, 2019, 41(6):748 [22] Jiang D B, Zhu M Y, Zhang L F. Numerical simulation of solidification behavior and solute transport in slab continuous casting with S-EMS. Metals, 2019, 9(4): 452 doi: 10.3390/met9040452 [23] Kunstreich S. Electromagnetic stirring for continuous casting. Rev Met Paris, 2003, 100(4): 395 doi: 10.1051/metal:2003198 [24] Liu H P, Wang Z Y, Qiu H. Numerical simulation of fluid flow and solidification in a vertical round bloom caster using a four-port SEN with mold and strand electromagnetic stirring. ISIJ Int, 2020, 60(9): 1924 doi: 10.2355/isijinternational.ISIJINT-2019-738 [25] Li S X, Xiao H, Wang P, et al. Analysis on electromagnetic field of continuous casting mold including a new integral method for calculating electromagnetic torque. Metals, 2019, 9(9): 946 doi: 10.3390/met9090946 [26] An H H, Bao Y P, Wang M, et al. Electromagnetic torque detecting for optimization of in-mould electromagnetic stirring in the billet and bloom continuous casting. Ironmak Steelmak, 2019, 46(9): 845 doi: 10.1080/03019233.2018.1522755 -