<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

行波磁場鑄流攪拌提升不銹鋼板坯等軸晶率

肖紅 王璞 蘭芳 李偉紅 唐海燕 李愛武 張家泉

肖紅, 王璞, 蘭芳, 李偉紅, 唐海燕, 李愛武, 張家泉. 行波磁場鑄流攪拌提升不銹鋼板坯等軸晶率[J]. 工程科學學報, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001
引用本文: 肖紅, 王璞, 蘭芳, 李偉紅, 唐海燕, 李愛武, 張家泉. 行波磁場鑄流攪拌提升不銹鋼板坯等軸晶率[J]. 工程科學學報, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001
XIAO Hong, WANG Pu, LAN Fang, LI Wei-hong, TANG Hai-yan, LI Ai-wu, ZHANG Jia-quan. Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings[J]. Chinese Journal of Engineering, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001
Citation: XIAO Hong, WANG Pu, LAN Fang, LI Wei-hong, TANG Hai-yan, LI Ai-wu, ZHANG Jia-quan. Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings[J]. Chinese Journal of Engineering, 2021, 43(6): 797-807. doi: 10.13374/j.issn2095-9389.2021.02.09.001

行波磁場鑄流攪拌提升不銹鋼板坯等軸晶率

doi: 10.13374/j.issn2095-9389.2021.02.09.001
基金項目: 國家自然科學基金資助項目(U1860111,51874033);國家重點研發計劃資助項目(016YEB0601302);湖南省科技計劃資助項目(2019RS2065)
詳細信息
    通訊作者:

    E-mail:jqzhang@metall.ustb.edu.cn

  • 中圖分類號: TF777.2

Stirring strands via traveling-wave magnetic fields to increase the equiaxed crystal ratio of stainless-steel slab castings

More Information
  • 摘要: 為揭示各種行波磁場鑄流攪拌的電磁冶金效果,基于計算域分段法建立了斷面1280 mm×200 mm板坯連鑄電磁、流動、傳熱和凝固的耦合模型,利用電氣參數和磁感應強度的實測值和預測值的對比驗證了模型的可靠性。研究表明:行波磁場攪拌器因電磁推力的方向性特點在板坯二冷區攪拌過程中均表現有不同程度與特征的端部效應,輥后箱式攪拌器(Box-typed electromagnetic stirrer, B-EMS)的單側安裝形式導致板坯內弧側磁感應強度遠大于外弧側,輥式攪拌器(Roller-typed electromagnetic stirrer, R-EMS)的對輥安裝形式則使磁感應強度呈現對稱分布。在400 kW和7 Hz的相同電氣參數下,R-EMS的電流強度比B-EMS高75 A;盡管箱式電磁攪拌的有效作用區域較輥式電磁攪拌大,鑄坯中心鋼液過熱耗散區域大,但輥式攪拌推動鋼液沖刷凝固前沿形核作用則明顯大于箱式攪拌。兩者均具有較好的抑制柱狀晶生長、促進凝固前沿等軸晶形核與發展的能力,將不銹鋼板坯等軸晶率提高至45%的門檻值以上,其中間隔型反向輥式攪拌器下的等軸晶率比箱式攪拌高約17%。綜合表明,基于行波磁場鑄流攪拌的間隔型反向輥式攪拌器有望更好地消除鐵素體不銹鋼板材表面皺折缺陷。

     

  • 圖  1  攪拌器類型及其在板坯鑄流中安裝形式。(a)箱式攪拌器;(b)輥式攪拌器

    Figure  1.  Schematic of the strand stirrer type and installation: (a) B-EMS (b) R-EMS

    圖  2  攪拌器布置與電磁推力特征。(a)箱式;(b)相鄰輥同向推力型;(c)間隔輥同向推力型;(d)間隔輥反向推力型

    Figure  2.  Schematic of the stirrer location and electromagnetic force: (a) B-EMS; (b) R-EMS-2; (c) R-EMS-T; (d) R-EMS-F

    圖  3  不同節點數量網格下計算的坯殼分布曲線

    Figure  3.  Shell thickness curves for different grid nodes

    圖  4  磁感應強度測量值與計算值對比。(a)箱式攪拌器;(b)輥式相鄰同向型攪拌器

    Figure  4.  Comparison of measured and calculated magnetic flux densities: (a) B-EMS; (b) R-EMS-2

    圖  5  電磁攪拌的電氣參數關系曲線。(a)電流與電壓;(b)電流與功率

    Figure  5.  Electrical parameters relationship for electromagnetic stirring: (a) current and voltage; (b) current and power

    圖  6  攪拌器鑄坯橫截面(XY面)上磁感應強度分布特征。(a)箱式攪拌器;(b)輥式攪拌器

    Figure  6.  Distributions of magnetic flux density on the cross section (XY plane) of the stirrer: (a) B-EMS; (b) R-EMS

    圖  7  板坯表面磁感應強度分布。(a)箱式;(b)相鄰輥同向推力型;(c)間隔輥同向推力型;(d)間隔輥反向推力型

    Figure  7.  Magnetic flux density distributions on the slab surface:(a)B-EMS;(b)R-EMS-2;(c)R-EMS-T;(d)R-EMS-F

    圖  8  板坯內磁感應強度分布。(a)中心線上沿拉坯方向;(b)中心線上沿寬面方向

    Figure  8.  Magnetic flux density distribution in slab: (a) on center line along the casting direction; (b) on center line along the wide face direction

    圖  9  不同攪拌方式下鑄坯窄面凝固前沿速度沿拉坯方向分布

    Figure  9.  Washing velocity distributions of the strand along the casting direction under different stirring modes

    圖  10  鑄坯橫截面(Z=4.0 m)內液相分率分布與鋼液流線圖。(a)箱式;(b)相鄰輥同向推力型;(c)間隔輥同向推力型;(d)間隔輥反向推力型

    Figure  10.  Distributions of the liquid fraction in the cross-section (Z = 4.0 m) of the slab and the molten steel streamline: (a) B-EMS; (b) R-EMS-2; (c) R-EMS-T; (d) R-EMS-F

    圖  11  板坯寬向中心面上鑄流方向溫度分布與鋼液流線圖。(a)箱式;(b)相鄰輥同向推力型;(c)間隔輥同向推力型;(d)間隔輥反向推力型

    Figure  11.  Temperature distributions and molten steel streamlines in the casting direction on the widthwise center plane of the slab: (a) B-EMS; (b) R-EMS-2; (c) R-EMS-T; (d) R-EMS-F

    圖  12  鑄坯窄面中心坯殼厚度沿鑄流分布。(a)電磁推力起始側;(b)推向側

    Figure  12.  Distributions of the thickness on the narrow-face center of the strand along the casting direction: (a) start side of electromagnetic force; (b) end side of electromagnetic force

    圖  13  鐵素體不銹鋼板坯鑄態組織形貌。(a)無攪拌;(b)箱式攪拌;(c)間隔輥反向推力型

    Figure  13.  As-cast structure and morphology of the ferritic stainless-steel slab: (a)without EMS (b) under B-EMS (c) under R-EMS-F

    表  1  1Cr17鐵素體不銹鋼主要化學成分(質量分數)

    Table  1.   Chemical composition of 1Cr17 stainless steel %

    CCrNiMnPSSi
    ≤0.1217≤0.6≤1.25≤0.035≤0.03≤0.75
    下載: 導出CSV

    表  2  計算用1Cr17不銹鋼熱物性參數和連鑄工藝參數

    Table  2.   Parameter values of 1Cr17 stainless-steel thermophysical properties and continuous casting practice

    ParametersValue ParametersValue
    Slab cross section/mm21280×200 Liquidus temperature/K1768
    Distance to meniscus of B-EMS/m4.0 Solidus temperature/K1703
    Distance to meniscus of R-EMS/m3.8, 4.09, and 5.2 Specific heat/(J·kg?1·K?1)720
    Relative permeability of each material1 Latent heat of solidification/(J·kg?1)272000
    Relative permeability of iron core1000 Superheat degree/K30
    Conductivity of molten steel/(S·m?1)7.14×105 Molten steel density/(kg·m?3)7200
    Specific water flow/(L·kg?1)0.4 Molten steel viscosity/(kg·m?1·s?1)0.0055
    Casting speed/(m·min?1)0.9 Thermal conductivity of molten steel/(W·m?1·K?1)32
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kang X F. Ferritic Stainless Steel. Beijing: Metallurgical Industry Press, 2012

    康喜范. 鐵素體不銹鋼. 北京: 冶金工業出版社, 2012
    [2] Hunter A, Ferry M. Texture enhancement by inoculation during casting of ferritic stainless steel strip. Metall Mater Trans A, 2002, 33: 1499 doi: 10.1007/s11661-002-0072-y
    [3] Hamada J I, Matsumoto Y, Fudanoki F, et al. Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets. ISIJ Int, 2003, 43(12): 1989 doi: 10.2355/isijinternational.43.1989
    [4] Hirata N, Ota H, Kato Y, et al. Change in the orientation of equiaxed and columnar grains of 16%Cr steels during hot rolling. Tetsu-to-Hagane, 2003, 89(8): 855 doi: 10.2355/tetsutohagane1955.89.8_855
    [5] Modak P, Patra S, Mitra R, et al. Effect of starting as-cast structure on the microstructure-texture evolution during subsequent processing and finally ridging behavior of ferritic stainless steel. Metall Mater Trans A, 2018, 49(6): 2219 doi: 10.1007/s11661-018-4566-7
    [6] Chang Z S, Zhang Q Y, Yang K Z, et al. Effects of continuous casting process parameters on central equiaxed crystal ratio of oriented silicon steel slab. China Metall, 2020, 30(1): 58

    常正昇, 張喬英, 楊克枝, 等. 板坯連鑄工藝參數對取向硅鋼鑄坯中心等軸晶率的影響. 中國冶金, 2020, 30(1):58
    [7] Kong W, Chen Y F, Cang D Q. Application of second-cooling electromagnetic stirring in high-silicon electrical steel continuous casting. Foundry Technol, 2018, 39(11): 2566

    孔為, 陳迎鋒, 蒼大強. 高硅電工鋼連鑄二冷電磁攪拌應用研究. 鑄造技術, 2018, 39(11):2566
    [8] Burden M H, Hunt J D. The extent of the eutectic range. J Cryst Growth, 1974, 22(4): 328 doi: 10.1016/0022-0248(74)90178-X
    [9] Itoh Y, Okajima T, Tashiro K. Refining of solidification structures of type 430 stainless steel by vibration method. Tetsu-to-Hagane, 1980, 66(8): 1093 doi: 10.2355/tetsutohagane1955.66.8_1093
    [10] Takeuchi H, Mori H, Ikehara Y, et al. The effects of electromagnetic stirring on cast structure of continuously cast SUS 430 stainless steel slabs. Tetsu-to-Hagane, 1980, 66(6): 638 doi: 10.2355/tetsutohagane1955.66.6_638
    [11] Takeuchi H, Ikehara Y, Yanai T, et al. Quality improvement of continuously cast stainless steel blooms through electromagnetic stirring. Tetsu-to-Hagane, 1977, 63(8): 1287 doi: 10.2355/tetsutohagane1955.63.8_1287
    [12] Ujiie Y, Maede H, Itoh Y, et al. Improving solidification structure of continuously cast steel by electromagnetic stirring. Tetsu-to-Hagane, 1981, 67(8): 1297 doi: 10.2355/tetsutohagane1955.67.8_1297
    [13] Kodukula S, Pet?j?j?rvi M, Savolainen J, et al. Influence of calcium treatment and electromagnetic stirring on ridging in dual-stabilized ferritic stainless steels. Steel Res Int, 2021, 92(2): 2000445 doi: 10.1002/srin.202000445
    [14] Kunstreich S. Electromagnetic stirring of slabs. Iron Steel, 2005, 40(9): 81 doi: 10.3321/j.issn:0449-749X.2005.09.020

    Kunstreich S. 板坯連鑄的電磁攪拌. 鋼鐵, 2005, 40(9):81 doi: 10.3321/j.issn:0449-749X.2005.09.020
    [15] Barna M, Javurek M, Wimmer P. Numeric simulation of the steel flow in a slab caster with a box-type electromagnetic stirrer. Steel Res Int, 2020, 91(11): 2000067 doi: 10.1002/srin.202000067
    [16] Xiao H, Wang P, Yi B, et al. A numerical and experimental study on the solidification structure of Fe–Cr–Ni steel slab casting by roller electromagnetic stirring. Metals, 2021, 11(1): 6
    [17] Zhang K, Chen S F, Yang B, et al. Study on arrangement of S-EMS rollers in secondary cooling zone of slab continuous casting machine. J Univ Sci Technol Liaoning, 2018, 41(5): 335

    張開, 陳士富, 楊濱, 等. 板坯二冷區電磁攪拌輥布置方式. 遼寧科技大學學報, 2018, 41(5):335
    [18] Aboutalebi M R, Guthrie R I L, Seyedein S H. Mathematical modeling of coupled turbulent flow and solidification in a single belt caster with electromagnetic brake. Appl Math Model, 2007, 31(8): 1671 doi: 10.1016/j.apm.2006.05.012
    [19] Jones W P, Launder B E. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Int J Heat Mass Tran, 1973, 16(6): 1119 doi: 10.1016/0017-9310(73)90125-7
    [20] Zhang Z, Wang P, Dong Y N, et al. Study on three-dimensional flow and heat transfer and solidification behavior in slab continuous casting process. Continuous Cast, 2019, 44(6): 41

    張壯, 王璞, 董延楠, 等. 板坯全鑄流三維流動和傳熱凝固行為研究. 連鑄, 2019, 44(6):41
    [21] Li S X, Wang P, Zhang J Q, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748

    李少翔, 王璞, 張家泉, 等. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為. 工程科學學報, 2019, 41(6):748
    [22] Jiang D B, Zhu M Y, Zhang L F. Numerical simulation of solidification behavior and solute transport in slab continuous casting with S-EMS. Metals, 2019, 9(4): 452 doi: 10.3390/met9040452
    [23] Kunstreich S. Electromagnetic stirring for continuous casting. Rev Met Paris, 2003, 100(4): 395 doi: 10.1051/metal:2003198
    [24] Liu H P, Wang Z Y, Qiu H. Numerical simulation of fluid flow and solidification in a vertical round bloom caster using a four-port SEN with mold and strand electromagnetic stirring. ISIJ Int, 2020, 60(9): 1924 doi: 10.2355/isijinternational.ISIJINT-2019-738
    [25] Li S X, Xiao H, Wang P, et al. Analysis on electromagnetic field of continuous casting mold including a new integral method for calculating electromagnetic torque. Metals, 2019, 9(9): 946 doi: 10.3390/met9090946
    [26] An H H, Bao Y P, Wang M, et al. Electromagnetic torque detecting for optimization of in-mould electromagnetic stirring in the billet and bloom continuous casting. Ironmak Steelmak, 2019, 46(9): 845 doi: 10.1080/03019233.2018.1522755
  • 加載中
圖(13) / 表(2)
計量
  • 文章訪問數:  1558
  • HTML全文瀏覽量:  430
  • PDF下載量:  38
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-02-09
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回