Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance
-
摘要: 金屬增材制造是增材制造技術中最重要的分支,其成形零件復雜度高,力學性能高于一般鑄件,已經被廣泛應用于航天航空、醫療、能源等領域。在目前主流金屬增材制造過程中,主要使用高能束熔化金屬粉體,從而造成極高的材料過冷度,雖然過冷細化晶粒與特殊析出相會提高材料的力學性能,但是學術界與工業界對金屬增材制造制件在服役過程中的腐蝕性能仍然存在疑問,亟需關于高能束金屬增材制造制件的抗腐蝕性能系統性研究綜述。因此,本文就三種常用的金屬增材制造技術,對目前金屬增材制造工件的腐蝕性能相關研究進展進行總結和歸納,深入研究了打印產品中的殘余應力、晶粒尺寸、析出相和各向異性等影響抗腐蝕性能的行為,分析了參數優化及熱處理工藝提高材料抗腐蝕性能的機理。最后對金屬增材制造的抗腐蝕性能的改善手段進行了展望。Abstract: Additive manufacturing technology is a method of manufacturing parts that are stacked layer by layer through the principle of discrete stacking, which is different from traditional subtractive manufacturing. It has been widely concerned due to its advantages of short process flow, high material-utilization rate, and highly flexible manufacturing. Additive metal manufacturing is the most important branch of additive manufacturing technology. Its forming parts have high complexity, showing excellent mechanical properties than ordinary castings. After more than 20 years of development, it has been widely used in aerospace, medical, energy, and other related fields. In the current mainstream metal material in the manufacturing process, the main use of high-energy beam-melting metal powders results in extremely high overcooling, whereas cold fine grains exhibit special precipitation and increase the mechanical properties of the material. However, there are still doubts about the corrosion performance of metal additive manufacturing parts in the service process. The mechanism of the corrosion effect of special microstructures and precipitation relative to materials in the service process is still unclear. Therefore, it is urgent to review the systematic research of the corrosion resistance of high-energy beam metal additive manufacturing parts. Corrosion resistance is also one of the key factors for metal additive manufacturing products to occupy a place in the market and should be paid attention to. Therefore, this article summarized the current research progress on the corrosion performance of metal additive manufacturing workpieces on three commonly used metal additive manufacturing technologies: laser melting, electron beam melting, and directional metal deposition. The residual stress, grain size, precipitated phase, and anisotropy affect the corrosion resistance behavior. The influence mechanism of the parameter optimization and heat-treatment process on the corrosion resistance of the material was analyzed. Finally, the prospects of improving the corrosion resistance of metal additive manufacturing products were discussed.
-
圖 4 SLM制造的AlSi10Mg樣品掃描電鏡圖像(SEM)[21]。(a~c)為俯視圖;(d~f)為側視圖;(b, c)顯示了熔池中心的精細蜂窩狀微結構;(c, f)顯示了高放大率下熔池邊界和周圍區域的粗糙微結構
Figure 4. SEM image of the AlSi10Mg sample manufactured by SLM[21]: (a–c) top view; (d–f) side view; (b, c) fine cellular microstructure of the core (center) of the melt pool; (c, f) coarse microstructure of the melt pool boundary and surrounding regions at high magnification
圖 11 DED打印316L不銹鋼顯微組織的TEM圖[49]。(a)高倍放大奧氏體;(b)奧氏體晶胞的電子衍射圖;(c)鐵素體晶胞的電子衍射圖
Figure 11. TEM images of the microstructure of the DED-produced 316L stainless steel[49]: (a) high magnification of austenite; (b) electron diffraction pattern taken from an austenite cell; (c) an electron diffraction pattern taken from an intercellular ferrite
圖 17 在陽極極化測試期間Al、Fe、Cu和Mg元素的溶解曲線(虛線itot代表從恒電位儀收集的總電流信號;灰色陰影區域說明了itot和iAl之間的差異;陰影面積增大代表了利于氧化鋁膜的形成和生長)[62]。(a)AA2024-T3;(b)AM2024
Figure 17. During the anodization test, the dissolution curves of Al, Fe, Cu and Mg elements, (the dotted line itot represents the total current signal collected from the potentiostat; the gray shaded area illustrates the difference between itot and iAl; the increased shadow area represents the formation and growth of alumina film)[62]: (a) AA2024-T3; (b) AM2024
表 1 0.6 mol·L?1 NaCl溶液中SLM-316L與鍛造316L電化學數據(ΔE是指樣品的鈍化層穩定電位范圍)[37]
Table 1. Electrochemical data of SLM-316L and forged 316L in 0.6 mol·L?1 NaCl solution (ΔE refers to the stable potential range of the passivation layer of the sample) [37]
Sample Ecorr/VSCE icorr/(μA·cm–2) ΔE/VSCE Wrought ?0.471 4.16 0.463 Wrought (heat treated) ?0.434 2.69 0.564 Printed ?0.362 1.29 0.609 Printed (heat treated) ?0.347 1.14 0.613 表 2 0.1 mol·L?1 NaCl溶液中SLM-316L與常規制造316L電化學數據[40]
Table 2. Electrochemical data of SLM-316L and as-cast 316L in a 0.1 mol·L?1 NaCl solution[40]
Sample icorr/(nA?mm–2) Ecorr/VSCE Epit/VSCE SLM-SD 11.2±4 ?0.10±0.07 1.08±0.09 SLM-BD 17.2±1 ?0.10±0.06 0.54±0.03 CM 50.3±3 ?0.18±0.05 0.48±0.02 Note: SD—horizontal direction; BD—vertical direction; CM—
conventionally manufactured.表 3 0.1 mol·L?1 NaCl溶液中SLM-Al–12Si與鑄態Al–12Si電化學數據[40]
Table 3. Electrochemical data of SLM-Al–12Si and as-cast Al–12Si in a 0.1 mol·L?1 NaCl solution[40]
Sample icorr/(nA?mm–2) Ecorr/VSCE Epit/VSCE SLM-SD 398.4±53 ?0.68±0.03 — SLM-BD 453.2±35 ?0.69±0.02 — Casting 1047.2±100 ?0.72±0.02 — 表 4 SLM和商用Al–Mg–Cu–Si合金的腐蝕電位和點蝕電位[59]
Table 4. Corrosion potential and pitting potential of SLM and commercial Al–Mg–Cu–Si alloys[59]
Sample Ecorr/VSCE Epit/VSCE 0.001 M NaCl, SLM alloy –0.570 –0.420 0.001 M NaCl, AA2024 –0.591 –0.522 0.1 M NaC, SLM alloy –0.686 –0.512 0.1 M NaCl, AA2024 –0.694 –0.691 表 5 SLM打印TC4合金XY面XZ面相結構具體組成[67] (V為體積分數)
Table 5. Phase composition of XY and XZ planes of the SLM-produced TC4 alloy[67] (V is volume fraction)
Sample Phase composition Vα or Vα'/% Vβ/% SLM-produced, XY-plane α'+β 88.1 11.9 SLM-produced, XZ-plane α'+β 95.0 5.0 www.77susu.com -
參考文獻
[1] Yan Y N, Zhang W, Lu Q P, et al. Principle and development of RPM based on the concept of discrete / stacked forming. China Mech Eng, 1994, 5(4): 64 doi: 10.3321/j.issn:1004-132X.1994.04.025顏永年, 張偉, 盧清萍, 等. 基于離散/堆積成型概念的RPM原理和發展. 中國機械工程, 1994, 5(4):64 doi: 10.3321/j.issn:1004-132X.1994.04.025 [2] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of Aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci, 2019, 106: 100578 doi: 10.1016/j.pmatsci.2019.100578 [3] Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting. Mater Sci Eng A, 2016, 670: 264 doi: 10.1016/j.msea.2016.06.013 [4] Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater Sci Eng A, 2016, 667: 139 doi: 10.1016/j.msea.2016.04.092 [5] Prashanth K G, Shakur Shahabi H, Attar H, et al. Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit Manuf, 2015, 6: 1 [6] Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al–12Si alloy synthesized using selective laser melting. Acta Mater, 2016, 115: 285 doi: 10.1016/j.actamat.2016.06.009 [7] Norman J, Madurawe R D, Moore C M V, et al. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev, 2017, 108: 39 doi: 10.1016/j.addr.2016.03.001 [8] Kumar A, Mandal S, Barui S, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater Sci Eng R Rep, 2016, 103: 1 doi: 10.1016/j.mser.2016.01.001 [9] Nune K C, Kumar A, Murr L E, et al. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity. J Biomed Mater Res, 2016, 104(2): 517 doi: 10.1002/jbm.a.35592 [10] Mohammed J S. Applications of 3D printing technologies in oceanography. Methods Oceanogr, 2016, 17: 97 doi: 10.1016/j.mio.2016.08.001 [11] Kirkland N T, Birbilis N, Staiger M P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater, 2012, 8(3): 925 doi: 10.1016/j.actbio.2011.11.014 [12] Wang X Y, No?l J J, Odnevall Wallinder I, et al. Metal bioaccessibility in synthetic body fluids — A way to consider positive and negative alloying effects in hazard assessments. Mater Des, 2021, 198: 109393 doi: 10.1016/j.matdes.2020.109393 [13] Liang P H, Tang Q, Feng Q X, et al. Numerical simulation and experiment of single track scanning and lapping in selective laser melting. J Mech Eng, 2020, 56(22): 56 doi: 10.3901/JME.2020.22.056梁平華, 唐倩, 馮琪翔, 等. 激光選區熔化單道掃描與搭接數值模擬及試驗. 機械工程學報, 2020, 56(22):56 doi: 10.3901/JME.2020.22.056 [14] Liu H R. Research on High-Precision Lifting Platform and Powder Spreading Device of Electron Beam Selective Melting Equipment [Dissertation]. Changchun: Jilin University, 2020劉赫然. 電子束選區熔融裝備高精度升降臺及鋪粉裝置研究[學位論文]. 長春: 吉林大學, 2020 [15] Murr L E, Martinez E, Amato K N, et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science. J Mater Res Technol, 2012, 1(1): 42 doi: 10.1016/S2238-7854(12)70009-1 [16] Murr L E, Gaytan S M, Ramirez D A, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol, 2012, 28(1): 1 [17] Shamsaei N, Yadollahi A, Bian L K, et al. An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Addit Manuf, 2015, 8: 12 [18] Wang Y M. Directed Energy Deposition Laser Head Integrated Design and 3D Printing Manufacturing [Dissertation]. Guangzhou: South China University of Technology, 2020王藝錳. 定向能量沉積激光頭一體化設計及3D打印制造[學位論文]. 廣州: 華南理工大學, 2020 [19] Singh A, Kapil S, Das M. A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Addit Manuf, 2020, 35: 101388 [20] Chew Y, Bi G J, Zhu Z G, et al. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater Sci Eng A, 2019, 744: 137 doi: 10.1016/j.msea.2018.12.005 [21] Asgari H, Baxter C, Hosseinkhani K, et al. On microstructure and mechanical properties of additively manufactured AlSi10Mg200C using recycled powder. Mater Sci Eng A, 2017, 707: 148 doi: 10.1016/j.msea.2017.09.041 [22] Revilla R I, Liang J W, Godet S, et al. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J Electrochem Soc, 2016, 164(2): C27 [23] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J, 2006, 12(5): 254 doi: 10.1108/13552540610707013 [24] Kruth J P, Froyen L, van Vaerenbergh J, et al. Selective laser melting of iron-based powder. J Mater Process Technol, 2004, 149(1-3): 616 doi: 10.1016/j.jmatprotec.2003.11.051 [25] Vrancken B, Cain V, Knutsen R, et al. Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scr Mater, 2014, 87: 29 doi: 10.1016/j.scriptamat.2014.05.016 [26] Williams R J, Davies C M, Hooper P A. A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit Manuf, 2018, 22: 416 doi: 10.1016/j.addma.2018.05.038 [27] Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci, 2011, 50(12): 3315 doi: 10.1016/j.commatsci.2011.06.023 [28] Bartlett J L, Li X D. An overview of residual stresses in metal powder bed fusion. Addit Manuf, 2019, 27: 131 [29] Withers P J, Bhadeshia H K D H. Residual stress. Part 2 — Nature and origins. Mater Sci Technol, 2001, 17(4): 366 doi: 10.1179/026708301101510087 [30] Lin L H, Liu Z Y, Zhuang W W, et al. Effects of pre-strain on the surface residual stress and corrosion behavior of an Al–Zn–Mg–Cu alloy plate. Mater Charact, 2020, 160: 110129 doi: 10.1016/j.matchar.2020.110129 [31] Lü Y, Ding Y, Cui H Z, et al. Investigation of microscopic residual stress and its effects on stress corrosion behavior of NiAl bronze alloy using in situ neutron diffraction/EBSD/tensile corrosion experiment. Mater Charact, 2020, 164: 110351 doi: 10.1016/j.matchar.2020.110351 [32] Lü Y, Wang L Q, Han Y F, et al. Investigation of microstructure and mechanical properties of hot worked NiAl bronze alloy with different deformation degree. Mater Sci Eng A, 2015, 643: 17 doi: 10.1016/j.msea.2015.06.078 [33] Okorokov V, Morgantini M, Gorash Y, et al. Corrosion fatigue of low carbon steel under compressive residual stress field. Procedia Eng, 2018, 213: 674 doi: 10.1016/j.proeng.2018.02.063 [34] Cruz V, Chao Q, Birbilis N, et al. Electrochemical studies on the effect of residual stress on the corrosion of 316L manufactured by selective laser melting. Corros Sci, 2020, 164: 108314 doi: 10.1016/j.corsci.2019.108314 [35] Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting. Corros Sci, 2021, 179: 109149 doi: 10.1016/j.corsci.2020.109149 [36] Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys Prototyp, 2015, 10(2): 67 doi: 10.1080/17452759.2015.1026045 [37] Hemmasian Ettefagh A, Guo S M. Electrochemical behavior of AISI316L stainless steel parts produced by laser-based powder bed fusion process and the effect of post annealing process. Addit Manuf, 2018, 22: 153 [38] Chen W, van Boven G, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels —Part II: Crack dormancy. Acta Mater, 2007, 55(1): 43 doi: 10.1016/j.actamat.2006.07.021 [39] Boven G V, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Mater, 2007, 55(1): 29 doi: 10.1016/j.actamat.2006.08.037 [40] Suryawanshi J, Baskaran T, Prakash O, et al. On the corrosion resistance of some selective laser melted alloys. Materialia, 2018, 3: 153 doi: 10.1016/j.mtla.2018.08.022 [41] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater, 2010, 63(12): 1201 doi: 10.1016/j.scriptamat.2010.08.035 [42] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150 [43] Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting. Mater Lett, 2019, 243: 157 [44] Hong J H, Yeoh F Y. Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Mater Today:Proc, 2020, 29: 196 doi: 10.1016/j.matpr.2020.05.543 [45] Gong X J, Cui Y J, Wei D X, et al. Building direction dependence of corrosion resistance property of Ti–6Al–4V alloy fabricated by electron beam melting. Corros Sci, 2017, 127: 101 doi: 10.1016/j.corsci.2017.08.008 [46] Chiba A Y, Muto I, Sugawara Y, et al. Pit initiation mechanism at MnS inclusions in stainless steel: Synergistic effect of elemental sulfur and chloride ions. J Electrochem Soc, 2013, 160(10): C511 doi: 10.1149/2.081310jes [47] Chao Q, Cruz V, Thomas S, et al. On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scr Mater, 2017, 141: 94 doi: 10.1016/j.scriptamat.2017.07.037 [48] Schaller R F, Mishra A, Rodelas J M, et al. The role of microstructure and surface finish on the corrosion of selective laser melted 304L. J Electrochem Soc, 2018, 165(5): C234 doi: 10.1149/2.0431805jes [49] Zi?tala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A, 2016, 677: 1 doi: 10.1016/j.msea.2016.09.028 [50] Melia M A, Nguyen H D A, Rodelas J M, et al. Corrosion properties of 304L stainless steel made by directed energy deposition additive manufacturing. Corros Sci, 2019, 152: 20 doi: 10.1016/j.corsci.2019.02.029 [51] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti–6Al–4V alloy in NaCl solution. Corros Sci, 2016, 102: 484 doi: 10.1016/j.corsci.2015.10.041 [52] Li J Q, Lin X, Yang Y, et al. Distinction in electrochemical behaviour of Ti6Al4V alloy produced by direct energy deposition and forging. J Alloys Compd, 2021, 860: 157912 doi: 10.1016/j.jallcom.2020.157912 [53] Bettini E, Eriksson T, Bostr?m M, et al. Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochimica Acta, 2011, 56(25): 9413 doi: 10.1016/j.electacta.2011.08.028 [54] Bettini E, Leygraf C, Lin C J, et al. Influence of grain boundaries on dissolution behavior of a biomedical CoCrMo alloy: In-situ electrochemical-optical, AFM and SEM/TEM studies. J Electrochem Soc, 2012, 159(9): C422 doi: 10.1149/2.056209jes [55] Gong X J, Li Y P, Nie Y, et al. Corrosion behaviour of CoCrMo alloy fabricated by electron beam melting. Corros Sci, 2018, 139: 68 doi: 10.1016/j.corsci.2018.04.033 [56] Zhang X Q, Li Y P, Tang N, et al. Corrosion behaviour of CoCrMo alloys in 2 wt% sulphuric acid solution. Electrochimica Acta, 2014, 125: 543 doi: 10.1016/j.electacta.2014.01.143 [57] Dong X, Sun Q, Zhou Y N, et al. Influence of microstructure on corrosion behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting. Corros Sci, 2020, 170: 108688 doi: 10.1016/j.corsci.2020.108688 [58] Santecchia E, Gatto A, Bassoli E, et al. Precipitates formation and evolution in a Co-based alloy produced by powder bed fusion. J Alloys Compd, 2019, 797: 652 doi: 10.1016/j.jallcom.2019.05.169 [59] Wang P, Gebert A, Yan L, et al. Corrosion of Al–3.5Cu–1.5Mg–1Si alloy prepared by selective laser melting and heat treatment. Intermetallics, 2020, 124: 106871 doi: 10.1016/j.intermet.2020.106871 [60] Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al–3.5Cu–1.5Mg–1Si alloy produced by selective laser melting. Mater Sci Eng A, 2018, 711: 562 doi: 10.1016/j.msea.2017.11.063 [61] Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci, 2004, 49(3-4): 389 doi: 10.1016/S0079-6425(03)00031-8 [62] Gharbi O, Jiang D, Feenstra D R, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros Sci, 2018, 143: 93 doi: 10.1016/j.corsci.2018.08.019 [63] Buchheit R G, Grant R P, Hlava P F, et al. Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3. J Electrochem Soc, 1997, 144(8): 2621 doi: 10.1149/1.1837874 [64] Lacroix L, Blanc C, Pébère N, et al. Simulating the galvanic coupling between S–Al2CuMg phase particles and the matrix of 2024 aerospace aluminium alloy. Corros Sci, 2012, 64: 213 doi: 10.1016/j.corsci.2012.07.020 [65] Cabrini M, Lorenzi S, Pastore T, et al. Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corros Sci, 2019, 152: 101 doi: 10.1016/j.corsci.2019.03.010 [66] Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti–6Al–4V alloy on different planes. Corros Sci, 2016, 111: 703 doi: 10.1016/j.corsci.2016.06.009 [67] Qiu P, Gao P P, Wang S Y, et al. Study on corrosion behavior of the selective laser melted NiTi alloy with superior tensile property and shape memory effect. Corros Sci, 2020, 175: 108891 doi: 10.1016/j.corsci.2020.108891 [68] Gu D D, Zhang H, Dai D H, et al. Anisotropic corrosion behavior of Sc and Zr modified Al–Mg alloy produced by selective laser melting. Corros Sci, 2020, 170: 108657 doi: 10.1016/j.corsci.2020.108657 [69] Sarkar S, Mukherjee S, Kumar C S, et al. Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process. J Manuf Process, 2020, 50: 279 doi: 10.1016/j.jmapro.2019.12.048 [70] Wang J C, Liu Y J, Qin P, et al. Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior. Mater Sci Eng A, 2019, 760: 214 doi: 10.1016/j.msea.2019.06.001 [71] Stoudt M R, Ricker R E, Lass E A, et al. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel. JOM, 2017, 69(3): 506 doi: 10.1007/s11837-016-2237-y [72] Lu Y J, Guo S, Yang Y, et al. Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy. J Alloys Compd, 2018, 730: 552 doi: 10.1016/j.jallcom.2017.09.318 [73] Yan X C, Shi C B, Liu T K, et al. Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI. Surf Coat Technol, 2020, 396: 125955 doi: 10.1016/j.surfcoat.2020.125955 [74] Leon A, Levy G K, Ron T, et al. The effect of hot isostatic pressure on the corrosion performance of Ti–6Al–4V produced by an electron-beam melting additive manufacturing process. Addit Manuf, 2020, 33: 101039 [75] Zhou C S, Hu S Y, Shi Q Y, et al. Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing. Corros Sci, 2020, 164: 108353 doi: 10.1016/j.corsci.2019.108353 [76] Li A, Liu X F, Yu B, et al. Key factors and developmental directions with regard to metal additive manufacturing. Chin J Eng, 2019, 41(2): 159李昂, 劉雪峰, 俞波, 等. 金屬增材制造技術的關鍵因素及發展方向. 工程科學學報, 2019, 41(2):159 [77] Kong D C, Ni X Q, Dong C F, et al. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Des, 2018, 152: 88 doi: 10.1016/j.matdes.2018.04.058 [78] Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion. Corros Sci, 2013, 67: 20 doi: 10.1016/j.corsci.2012.09.044 [79] Laleh M, Hughes A E, Yang S, et al. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting. Corros Sci, 2020, 165: 108394 doi: 10.1016/j.corsci.2019.108394 [80] Ni X Q, Kong D C, Wu W H, et al. Corrosion behavior of 316L stainless steel fabricated by selective laser melting under different scanning speeds. J Mater Eng Perform, 2018, 27(7): 3667 doi: 10.1007/s11665-018-3446-z [81] Lu Y J, Wu S Q, Gan Y L, et al. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater Sci Eng C, 2015, 49: 517 doi: 10.1016/j.msec.2015.01.023 [82] Kurzynowski T, Gruber K, Stopyra W, et al. Correlation between process parameters, microstructure and properties of 316?L stainless steel processed by selective laser melting. Mater Sci Eng A, 2018, 718: 64 doi: 10.1016/j.msea.2018.01.103 -