<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

被蓋層分隔儲層油源斷裂輸導油氣有效時期厘定方法及其應用

梁木桂 付廣 董金夢 李喬喬

梁木桂, 付廣, 董金夢, 李喬喬. 被蓋層分隔儲層油源斷裂輸導油氣有效時期厘定方法及其應用[J]. 工程科學學報, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001
引用本文: 梁木桂, 付廣, 董金夢, 李喬喬. 被蓋層分隔儲層油源斷裂輸導油氣有效時期厘定方法及其應用[J]. 工程科學學報, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001
LIANG Mu-gui, FU Guang, DONG Jin-meng, LI Qiao-qiao. Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock[J]. Chinese Journal of Engineering, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001
Citation: LIANG Mu-gui, FU Guang, DONG Jin-meng, LI Qiao-qiao. Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock[J]. Chinese Journal of Engineering, 2022, 44(8): 1425-1432. doi: 10.13374/j.issn2095-9389.2021.01.28.001

被蓋層分隔儲層油源斷裂輸導油氣有效時期厘定方法及其應用

doi: 10.13374/j.issn2095-9389.2021.01.28.001
基金項目: 國家自然科學基金資助項目(41872157,42072157)
詳細信息
    通訊作者:

    E-mail: fuguang2008@126.com

  • 中圖分類號: TE122.1

Determination method and its application of effective period for transporting oil and gas by the oil source fault of reservoir separated by caprock

More Information
  • 摘要: 為了準確研究含油氣盆地被蓋層分隔儲層油源斷裂在油氣成藏中的作用,在被蓋層分隔儲層油源斷裂輸導油氣機理及有效時期研究的基礎上,通過斷裂停止活動時期、斷裂開始破壞泥巖蓋層封閉能力時期和斷裂填充物開始封閉時期確定出油源斷裂輸導油氣時期,利用源巖地化特征確定出源巖排烴時期,將二者疊合建立了一套被蓋層分隔儲層油源斷裂輸導油氣有效時期的厘定方法。應用結果表明:在測線L2處F1油源斷裂向東一段儲層輸導油氣有效時期相對較長,為5.3 Ma,較有利于油氣在東一段儲層中運聚成藏(目前構造高部位尚未鉆探);在測線L8處F1油源斷裂向東一段儲層輸導油氣有效時期相對較短,為2.4 Ma,且主要為斷裂填充物輸導油氣,不利于油氣在東一段儲層中大規模運聚成藏,和F1油源斷裂在測線L8附近東一段雖已發現油氣,但規模有限一致。該方法可有效用于厘定被蓋層分隔儲層油源斷裂輸導油氣有效時期。

     

  • 圖  1  被蓋層分隔儲層油源斷裂輸導油氣時期構成示意

    Figure  1.  Composition of the period for transporting oil and gas by the oil source fault of the reservoir separated by caprock

    圖  2  被蓋層分隔儲層油源斷裂輸導油氣有效時期厘定示意

    Figure  2.  Determination of the effective period for transporting oil and gas by the oil source fault of the reservoir separated by caprock

    圖  3  斷裂填充物排替壓力預測示意

    Figure  3.  Prediction of the displacement pressure of the fault filler

    圖  4  南堡5號構造F1油源斷裂與油氣分布關系.(a)平面圖;(b)剖面圖

    Figure  4.  Distribution of the F1 oil source fault and hydrocarbon in Nanpu 5th structure: (a) plan; (b) section views

    圖  5  F1油源斷裂在不同層位生長指數分布

    Figure  5.  Distribution of the growth index of the F1 oil source fault in different layers

    圖  6  南堡5號構造F1油源斷裂不同測線處東二段泥巖蓋層斷接厚度

    Figure  6.  Juxtaposition thickness of the mudstone caprock of E3d2 in the F1 oil source fault of the Nanpu 5th structure

    圖  7  F1油源斷裂開始破壞東二段泥巖蓋層封閉能力時期厘定

    Figure  7.  Determination of the period when the F1 oil source fault started to destroy the sealing capacity of the mudstone caprock of E3d2

    圖  8  在東二段泥巖蓋層內F1油源斷裂填充物開始封閉時期厘定.(a)測線L2;(b)測線L8

    Figure  8.  Determination of the period when the F1 oil source fault fillers began sealing in the mudstone caprock of E3d2: (a) line L2; (b) line L8

    圖  9  F1油源斷裂向東一段儲層輸導油氣有效時期厘定.(a)測線L2;(b)測線L8

    Figure  9.  Determination of the effective period for transporting oil and gas from the F1 oil source fault to the reservoir of E3d1: (a) line L2; (b) line L8

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang B W, Fu G, Zhang J H, et al. Fracture development in oil-migrating fault transition zones and its control on hydrocarbon migration and accumulation: A case study of Es2 oil formation of Yilunpu structure of Wen’an slope of Jizhong depression. J Jilin Univ (Earth Sci Ed), 2017, 47(2): 370

    張博為, 付廣, 張居和, 等. 油源斷裂轉換帶裂縫發育及其對油氣控制作用——以冀中坳陷文安斜坡議論堡地區沙二段為例. 吉林大學學報(地球科學版), 2017, 47(2):370
    [2] Wang C, Lü Y F, Wang Q, et al. Evaluations of oil and gas lateral migration across faults: A case study of Shigezhuang nose structure of Wen’an slope in Baxian sag, Jizhong depression, Bohai Bay Basin, China Petroleum Explor Dev, 2017, 44(6): 880

    王超, 呂延防, 王權, 等. 油氣跨斷層側向運移評價方法——以渤海灣盆地冀中坳陷霸縣凹陷文安斜坡史各莊鼻狀構造帶為例. 石油勘探與開發, 2017, 44(6): 880
    [3] Bouvier J D, Kaars-Sijpesteijn C H, Kluesner D F, et al. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria. AAPG bulletin, 1989, 73(11): 1397
    [4] Knipe R J, Jones G, Fisher Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. Geological Society,London,Special Publications, 1998, 147(1): vii doi: 10.1144/GSL.SP.1998.147.01.01
    [5] Fu G, Han G, Li S Z. A prediction method for fracture lateral-connected hydrocarbon migration. Oil Geophys Prospect, 2017, 52(6): 1298

    付廣, 韓剛, 李世朝. 斷裂側接輸導油氣運移部位預測方法及其應用. 石油地球物理勘探, 2017, 52(6):1298
    [6] Zhan M W, Fu G, Qiu C Y, et al. A new predicting method for comprehensive damage degree of mudstone caprock by fault and its application. J Jilin Univ (Earth Sci Ed), 2017, 47(6): 1687

    展銘望, 付廣, 仇翠瑩, 等. 一種新的斷裂破壞泥巖蓋層程度的綜合研究方法. 吉林大學學報(地球科學版), 2017, 47(6):1687
    [7] Fu G, Zhan M W. Geological conditions for lateral sealing of active faults and relevant research methods. Nat Gas Ind, 2016, 36(10): 28 doi: 10.3787/j.issn.1000-0976.2016.10.004

    付廣, 展銘望. 活動期斷裂側向封閉的地質條件及其研究方法. 天然氣工業, 2016, 36(10):28 doi: 10.3787/j.issn.1000-0976.2016.10.004
    [8] Meng S W, Sun D X, Yu J Q, et al. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography. Chin J Eng, 2021, 43(11): 1552

    孟思煒, 孫大興, 俞佳慶, 等. 基于面投影微立體光刻技術的三維模擬儲層巖心模型制造. 工程科學學報, 2021, 43(11):1552
    [9] Hu X L, Lü Y F, Sun Y H, et al. Comprehensive quantitative evaluation of vertical sealing ability of faults in caprock: An example of Ed2 mudstone caprock in nanpu sag. J Jilin Univ (Earth Sci Ed), 2018, 48(3): 705

    胡欣蕾, 呂延防, 孫永河, 等. 泥巖蓋層內斷層垂向封閉能力綜合定量評價: 以南堡凹陷5號構造東二段泥巖蓋層為例. 吉林大學學報(地球科學版), 2018, 48(3):705
    [10] Lü Y F, Xu C L, Fu G, et al. Oil-controlling models of caprock-fault combination and prediction of favorable horizons for hydrocarbon accumulation in middle-shallow sequences of Nanpu sag. Oil Gas Geol, 2014, 35(1): 86 doi: 10.11743/ogg20140111

    呂延防, 許辰璐, 付廣, 等. 南堡凹陷中淺層蓋-斷組合控油模式及有利含油層位預測. 石油與天然氣地質, 2014, 35(1):86 doi: 10.11743/ogg20140111
    [11] Lü Y F, Huang J S, Fu G, et al. Quantitative study on fault sealing ability in sandstone and mudstone thin interbed. Acta Petrolei Sin, 2009, 30(6): 824 doi: 10.3321/j.issn:0253-2697.2009.06.005

    呂延防, 黃勁松, 付廣, 等. 砂泥巖薄互層段中斷層封閉性的定量研究. 石油學報, 2009, 30(6):824 doi: 10.3321/j.issn:0253-2697.2009.06.005
    [12] Fristad T, Groth A, Yielding G, et al. Quantitative fault seal prediction: A case study from Oseberg Syd. Nor Petroleum Soc Special Publ, 1997, 7: 107
    [13] Fulljames J R, Zijerveld L J J, Franssen R C M W. Fault seal processes: Systematic analysis of fault seals over geological and production time scales. Nor Petroleum Soc Special Publ, 1997, 7: 51
    [14] Zhu W Y, Chen Z, Song Z Y, et al. Research progress in theories and technologies of shale gas development in China. Chin J Eng, 2021, 43(10): 1397

    朱維耀, 陳震, 宋智勇, 等. 中國頁巖氣開發理論與技術研究進展. 工程科學學報, 2021, 43(10):1397
    [15] Shi J J, Fu G, Lü Y F, et al. Comprehensive evaluation of regional seal in the middle of the first member of Shahejie Fm in the Qikou Sag. Oil Gas Geol, 2011, 32(5): 671 doi: 10.11743/ogg20110505

    史集建, 付廣, 呂延防, 等. 歧口凹陷沙河街組一段中部區域蓋層封氣能力綜合評價. 石油與天然氣地質, 2011, 32(5):671 doi: 10.11743/ogg20110505
    [16] Wang W, Fu G, Hu X L. A method study of destruction degree of faults to caprock comprehensive sealing gas ability and its application. J Jilin Univ (Earth Sci Ed), 2017, 47(3): 685

    王偉, 付廣, 胡欣蕾. 斷裂對蓋層封氣綜合能力破壞程度的研究方法及其應用. 吉林大學學報(地球科學版), 2017, 47(3):685
    [17] Jiang G P, Fu G, Sun T W. Seismic data is used to determine the transportation oil-gas ability of oil source faults and the difference of oil?gas accumulation. Prog Geophys, 2017, 32(1): 160 doi: 10.6038/pg20170122

    姜貴璞, 付廣, 孫同文. 利用地震資料確定油源斷裂輸導油氣能力及油氣富集的差異性. 地球物理學進展, 2017, 32(1):160 doi: 10.6038/pg20170122
    [18] Fu G, Zhang B W, Wu W. Mechanism and detection of regional mudstone caprock sealing oil and gas migration along transporting fault. J China Univ Petroleum (Ed Nat Sci), 2016, 40(3): 36

    付廣, 張博為, 吳偉. 區域性泥巖蓋層阻止油氣沿輸導斷裂運移機制及其判別方法. 中國石油大學學報(自然科學版), 2016, 40(3):36
    [19] F?rseth R B. Shale smear along large faults: Continuity of smear and the fault seal capacity. J Geol Soc, 2006, 163(5): 741 doi: 10.1144/0016-76492005-162
    [20] Zhao M F, Liu Z R, Xin Q L, et al. Fault activity features and its control over oil of Linnan area in Huimin depression. Petroleum Explor Dev, 2000, 27(6): 9 doi: 10.3321/j.issn:1000-0747.2000.06.002

    趙密福, 劉澤容, 信荃麟, 等. 惠民凹陷臨南地區斷層活動特征及控油作用. 石油勘探與開發, 2000, 27(6):9 doi: 10.3321/j.issn:1000-0747.2000.06.002
    [21] Li Q Y, Luo F Z, Miao C Z. Research on fault activity ratio and its application. Fault Block Oil Gas Field, 2000, 7(2): 15

    李勤英, 羅鳳芝, 苗翠芝. 斷層活動速率研究方法及應用探討. 斷塊油氣田, 2000, 7(2):15
    [22] Hu M, Fu G, Lü Y F, et al. The fault activity period and its relationship to deep gas accumulation in the Xujiaweizi depression, Songliao basin. Geol Rev, 2010, 56(5): 710

    胡明, 付廣, 呂延防, 等. 松遼盆地徐家圍子斷陷斷裂活動時期及其與深層氣成藏關系分析. 地質論評, 2010, 56(5):710
    [23] Liu Z, Lü Y F, Sun Y H, et al. Characteristics and significance of syngenetic fault segmentation in hydrocarbon accumulation: An example of Yuanyanggou fault in western sag, Liaohe depression. J China Univ Min Technol, 2012, 41(5): 793

    劉哲, 呂延防, 孫永河, 等. 同生斷裂分段生長特征及其石油地質意義——以遼河西部凹陷鴛鴦溝斷裂為例. 中國礦業大學學報, 2012, 41(5):793
    [24] Tan K J, Wei P S, Lü X M, et al. Research on quantitative resumption method of stratum paleothickness and its application—aking ludong area in zhunge'er basin as an example. Nat Gas Ind, 2005, 25(10): 24 doi: 10.3321/j.issn:1000-0976.2005.10.008

    譚開俊, 衛平生, 呂錫敏, 等. 地層古厚度定量恢復方法研究及應用— —以準噶爾盆地陸東地區為例. 天然氣工業, 2005, 25(10):24 doi: 10.3321/j.issn:1000-0976.2005.10.008
    [25] Fu G, Wang H R, Hu X L. Prediction method and application of caprock faulted-contact thickness lower limit for oil-gas sealing in fault zone. J China Univ Petroleum (Ed Nat Sci), 2015, 39(3): 30

    付廣, 王浩然, 胡欣蕾. 斷裂帶蓋層油氣封蓋斷接厚度下限的預測方法及其應用. 中國石油大學學報(自然科學版), 2015, 39(3):30
    [26] Fu G, Dong J M, Peng W T. Determination method and application for the conversion period of fault-caprock configuration leakage and sealing. Acta Sedimentol Sin, 2020, 38(4): 868

    付廣, 董金夢, 彭萬濤. 斷蓋配置滲漏與封閉轉換時期的確定方法及其應用. 沉積學報, 2020, 38(4):868
    [27] Shi J J, Li L L, Fu G, et al. Quantitative evaluation method and application of vertical sealing property of faults in caprock. J Jilin Univ (Earth Sci Ed), 2012, 42(Suppl 2): 162

    史集建, 李麗麗, 付廣, 等. 蓋層內斷層垂向封閉性定量評價方法及應用. 吉林大學學報(地球科學版), 2012, 42(增刊2): 162
    [28] Fu G, Yang M, Lü Y F, et al. A quantitative evaluation method for ancient lateral sealing of fault. Acta Petrolei Sin, 2013, 34(Suppl 1): 78

    付廣, 楊勉, 呂延防, 等. 斷層古側向封閉性定量評價方法及其應用. 石油學報, 2013, 34(增刊1): 78
    [29] Shao X J, Liu Z, Cui W F. Restoration of the paleoburial depth of strata in deposition basin. Petroleum Explor Dev, 1999, 26(3): 53

    邵新軍, 劉震, 崔文富. 沉積盆地地層古埋深的恢復. 石油勘探與開發, 1999, 26(3):53
    [30] Wu G P, Su J Y, Cheng S, et al. A method for obtaining shaliness using Wiener filtering based on logging data natural gamma ray. Earth Sci, 2008, 33(4): 572

    吳國平, 蘇江玉, 成實, 等. 基于自然伽馬測井信號的維納濾波法求取泥質含量. 地球科學, 2008, 33(4):572
    [31] Fan B J, Dong Y X, Pang X Q. Establishment of effective source rock and hydrocarbon expulsion quantity: Taking Nanpu sag for example. J Central South Univ (Sci Technol), 2012, 43(1): 229

    范柏江, 董月霞, 龐雄奇. 有效源巖的精確厘定及其排烴量: 以南堡凹陷為例. 中南大學學報(自然科學版), 2012, 43(1):229
    [32] Tang J C, Li H, Zhang H Y, et al. Sandbody identification in the first member of Sha-1 of Nanpu Structure 5. Oil Geophys Prospect, 2016, 51(Suppl 1): 64

    唐建超, 李赫, 張洪宇, 等. 南堡凹陷5號構造沙一段砂體精細識別. 石油地球物理勘探, 2016, 51(增刊1): 64
    [33] Liu Z, Fu G, Lü Y F, et al. Quantitative evaluation for control of faults on hydrocarbon accumulation in Nanpu sag. J China Univ Petroleum (Ed Nat Sci), 2013, 37(1): 27

    劉哲, 付廣, 呂延防, 等. 南堡凹陷斷裂對油氣成藏控制作用的定量評價. 中國石油大學學報(自然科學版), 2013, 37(1):27
    [34] Fu G, Liang M G, Zou Q, et al. Research method and its application to effectiveness of time matching of source-fault-caprock. J China Univ Petroleum (Ed Nat Sci), 2020, 44(1): 25

    付廣, 梁木桂, 鄒倩, 等. 源斷蓋時間匹配有效性的研究方法及其應用. 中國石油大學學報(自然科學版), 2020, 44(1):25
  • 加載中
圖(9)
計量
  • 文章訪問數:  437
  • HTML全文瀏覽量:  228
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-28
  • 網絡出版日期:  2021-08-18
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回