<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

連鑄控流模式對大方坯及棒材組織結構與宏觀偏析影響

王璞 鐵占鵬 肖紅 張壯 唐海燕 苗紅生 張家泉

王璞, 鐵占鵬, 肖紅, 張壯, 唐海燕, 苗紅生, 張家泉. 連鑄控流模式對大方坯及棒材組織結構與宏觀偏析影響[J]. 工程科學學報, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
引用本文: 王璞, 鐵占鵬, 肖紅, 張壯, 唐海燕, 苗紅生, 張家泉. 連鑄控流模式對大方坯及棒材組織結構與宏觀偏析影響[J]. 工程科學學報, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007
Citation: WANG Pu, TIE Zhan-peng, XIAO Hong, ZHANG Zhuang, TANG Hai-yan, MIAO Hong-sheng, ZHANG Jia-quan. Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process[J]. Chinese Journal of Engineering, 2021, 43(8): 1081-1089. doi: 10.13374/j.issn2095-9389.2021.01.27.007

連鑄控流模式對大方坯及棒材組織結構與宏觀偏析影響

doi: 10.13374/j.issn2095-9389.2021.01.27.007
基金項目: 國家自然科學基金資助項目(U1860111, 51874033);國家重點研發計劃資助項目(016YEB0601302);湖南省科技計劃資助項目(2019RS2065)
詳細信息
    通訊作者:

    E-mail:jqzhang@metall.ustb.edu.cn

  • 中圖分類號: TF777.2

Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process

More Information
  • 摘要: 以中碳結構鋼大方坯及其熱軋棒材為研究對象,通過對鑄坯和軋材進行低倍侵蝕和成分分析,揭示了連鑄控流模式對大方坯凝固組織與宏觀偏析分布特征的影響及其鑄軋遺傳性。研究表明:常規直通水口澆注模式下,結晶器電磁攪拌(Mold electromagnetic stirring, M-EMS)電流由0增加到800 A,鑄坯等軸晶率由6.06%僅可增加到11.71%,難以有效避免大方坯常見的中心縮孔缺陷與突出的中心線偏析。采用新型五孔水口澆注模式,即使不開啟M-EMS,鑄坯中心等軸晶率仍可達23.1%,大方坯中心縮孔級別可降至1.0級以下,滿足后續熱軋大棒材探傷要求。同時發現,五孔水口澆注模式下,大方坯鑄態組織中往往會出現較為明顯的柱狀晶到等軸晶轉變(Columnar to equiaxed transition, CET)區,鑄坯斷面碳偏析指數呈M型分布,表現為斷面1/4位置CET區域碳偏析指數最高。大棒材軋制基本改變不了鑄坯斷面宏觀偏析的分布形態,且可能導致中心線偏析指數增加。同時指出,基于連鑄控流模式的作用規律和鑄?軋遺傳性特征,以及特殊鋼長材熱加工對中心致密度和偏析分布與程度的要求,實際生產中應從連鑄工藝源頭合理地控制鑄態組織與宏觀偏析分布形態。

     

  • 圖  1  大方坯鑄機和兩種水口示意圖

    Figure  1.  Schematic diagram of the bloom casting machine and the two kinds of nozzles

    圖  2  大方坯鑄坯(a)與熱軋棒材(b)截面取樣及鉆屑示意圖

    Figure  2.  Schematic diagram for section sampling and drilling of the as-cast bloom (a) and hot-rolled bar (b)

    圖  3  結晶器不同控流模式下大方坯橫截面低倍情況。(a)115-S3B;(b)115-S3Z;(c)536-S1B

    Figure  3.  Macrostructure of the bloom cross-section under different flow control modes in the mold: (a) 115-S3B;(b) 115-S3Z;(c) 536-S1B

    圖  4  結晶器不同控流模式下鑄坯等軸晶率

    Figure  4.  Equiaxed crystal ratios under different flow control modes in the mold

    圖  5  不同F-EMS參數下大方坯低倍情況。(a)578-S2A鑄坯橫截面;(b)578-S2A鑄坯縱截面;(c)579-S1A鑄坯橫截面;(d)579-S1A鑄坯縱截面

    Figure  5.  Macrostructure of bloom castings under different parameters of the F-EMS: (a) cross-section of 578-S2A;(b) longitudinal section of 578-S2A;(c) cross-section of 579-S1A;(d) longitudinal section of 579-S1A

    圖  6  不同F-EMS參數下熱軋圓棒低倍情況。(a)578-S2A軋材橫截面;(b)578-S2A軋材縱截面;(c)579-S1A軋材橫截面;(d)579-S1A軋材縱截面

    Figure  6.  Macrostructure of hot-rolled bars under different parameters of the F-EMS: (a) cross-section of 578-S2A;(b) longitudinal section of 578-S2A;(c) cross-section of 579-S1A;(d) longitudinal section of 579-S1A

    圖  7  不同拉速下大方坯低倍形貌。(a)579-S3B鑄坯橫截面;(b)579-S3B鑄坯縱截面;(c)579-S2B鑄坯橫截面;(d)579-S2B鑄坯縱截面

    Figure  7.  Macrostructure of bloom castings under different casting speeds: (a) cross-section of 579-S3B;(b) longitudinal section of 579-S3B;(c) cross-section of 579-S2B;(d) longitudinal section of 579-S2B

    圖  8  五孔水口組合控流模式下不同拉速鑄坯等軸晶率

    Figure  8.  Equiaxed crystal ratios under different casting speeds with combined flow control modes

    圖  9  兩種控流模式下大方坯縱截面低倍及碳偏析指數分布。(a)115-S3Z;(b)536-S2B

    Figure  9.  Macrostructure and carbon segregation index in the bloom longitudinal sections under two flow control modes: (a) 115-S3Z;(b) 536-S2B

    圖  10  鑄態枝晶組織特征與CET區正偏析形成機理

    Figure  10.  Schematic illustration of the as-cast macrostructure and location of the CET zone

    1—chilled layed;2—columnar zone;3—CET zone;4—solid-liquid zone of euqiaxed;5—liquid-solid zone of equiaxed

    圖  11  鑄坯(左)與軋材(右)鉆屑取樣及其局域點狀偏析分布特征示意圖

    Figure  11.  Schematic illustration of sample drilling and local spot segregation distribution in the bloom casting and rolled bar

    圖  12  碳偏析指數分布特征。(a)鑄坯;(b)軋材

    Figure  12.  Distribution of the carbon segregation index: (a) as-cast bloom;(b) hot-rolled bar

    表  1  大方坯連鑄機及生產工藝基本參數

    Table  1.   Bloom continuous casting machine and its basic production parameters

    Number of
    castings
    Spacing of each
    strand/ mm
    Cross-section/
    (mm×mm)
    Radius of continuous
    caster/m
    Mold length/
    mm
    Maximum metallurgical
    length/m
    Electromagnetic stirring
    technology
    3 strands2200410×53016.578034M-EMS+F-EMS
    下載: 導出CSV

    表  2  45鋼主要化學成分(質量分數)

    Table  2.   Chemical composition of 45 steel %

    CSiMnCrNiSP
    0.42–0.500.17–0.370.5–0.8≤0.25≤0.25≤0.035≤0.035
    下載: 導出CSV

    表  3  試樣編號及澆鑄試驗工況

    Table  3.   Sample numbers and casting conditions

    Sample
    number
    Injection
    mode
    Superheat
    degree/℃
    Casting speed/
    (m·min?1)
    (Current intensity/A) \
    (Frequency/Hz)
    M-EMSF-EMS
    115-S3BNormal nozzle200.380\0700\7.5
    115-S3ZNormal nozzle200.38800\1.5700\7.5
    536-S1BFive-port nozzle330.380\0700\7.5
    536-S2BFive-port nozzle330.38300\1.5700\7.5
    578-S2AFive-port nozzle280.38500\1.5660\7.5
    579-S1AFive-port nozzle280.38500\1.5800\5
    579-S3BFive-port nozzle280.40500\1.5800\5
    579-S2BFive-port nozzle280.42500\1.5800\5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang P, Li S X, Zhang Z, et al. Effect of combined stirring modes on the solidification behavior of special steel bloom casting. J Mech Eng, 2020, 56(12): 99 doi: 10.3901/JME.2020.12.099

    王璞, 李少翔, 張壯, 等. 組合攪拌模式對連鑄特殊鋼大方坯凝固行為的影響. 機械工程學報, 2020, 56(12):99 doi: 10.3901/JME.2020.12.099
    [2] Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmak Steelmak, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039
    [3] Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process. Metall Mater Trans B, 2017, 48(1): 444 doi: 10.1007/s11663-016-0864-x
    [4] Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931
    [5] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [6] Wu Q M, Xu W Y, Yan H C, et al. Carbon macro-segregation control of rolled bar produced from cast bloom of 20CrMnTiH steel. Iron Steel, 2012, 47(5): 23

    吳清明, 許偉陽, 顏慧成, 等. 20CrMnTiH齒輪鋼大方坯軋制圓鋼宏觀碳偏析控制. 鋼鐵, 2012, 47(5):23
    [7] Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: Model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6
    [8] Wang P, Tie Z P, Li S X, et al. Effect of M-EMS current intensity on the subsurface segregation and internal solidification structure for bloom casting of 42CrMo steel. Ironmak Steelmak, 2021: 1
    [9] An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996

    安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7):996
    [10] Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17

    丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1):17
    [11] Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 doi: 10.3321/j.issn:0449-749X.2007.03.005

    王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3):18 doi: 10.3321/j.issn:0449-749X.2007.03.005
    [12] Wang X D, Wang B F, Cao J G, et al. Determination of F-EMS position and process parameters in bloom continuous caster. Iron Steel, 2011, 46(8): 40

    王曉東, 王寶峰, 曹建剛, 等. 大方坯末端電磁攪拌位置和連鑄工藝參數的確定. 鋼鐵, 2011, 46(8):40
    [13] Li S X, Han Z Q, Zhang J Q. Numerical modeling of the macrosegregation improvement in continuous casting blooms by using F-EMS. JOM, 2020, 72(11): 4117 doi: 10.1007/s11837-020-04363-6
    [14] Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom. Iron Steel, 2018, 53(8): 49

    陳亮, 宋波, 陳天明, 等. 45鋼連鑄大方坯中心疏松與縮孔控制. 鋼鐵, 2018, 53(8):49
    [15] Sun H B, Zhang J Q. Macrosegregation improvement by swirling flow nozzle for bloom continuous castings. Metall Mater Trans B, 2014, 45(3): 936 doi: 10.1007/s11663-013-9999-1
    [16] Sun H B, Han Z G, Qian H Z, et al. Effects of injection modes on the flow pattern and temperature distribution of molten steel in a bloom casting mould. J Univ Sci Technol Beijing, 2010, 32(9): 1131

    孫海波, 韓占光, 錢宏智, 等. 注流方式對大方坯連鑄結晶器內鋼水流動與溫度狀態影響. 北京科技大學學報, 2010, 32(9):1131
    [17] Cheng X W, Fu Q H, Dai F Q, et al. Application of swirling flow nozzle technology for bloom continuous castings. Steelmaking, 2015, 31(5): 32

    程曉文, 付謙惠, 戴方欽, 等. 旋流水口澆鑄技術在大方坯連鑄的應用研究. 煉鋼, 2015, 31(5):32
    [18] Wang P, Li S X, Tang H Y, et al. Swirling flow effect of radial outlet nozzle for bloom and its effect on initial solidification. China Metall, 2019, 29(9): 15

    王璞, 李少翔, 唐海燕, 等. 大方坯徑向水口旋流效應及其對凝固的影響. 中國冶金, 2019, 29(9):15
    [19] Xu W Y. The Formation and Control of Carbon Segregation of Gear Steel in the Bloom Casting Process [Dissertation]. Beijing: Central Iron and Steel Research Institute, 2012

    許偉陽. 連鑄齒輪鋼矩形坯碳“錠型”偏析的形成與控制[學位論文]. 北京: 鋼鐵研究總院, 2012
    [20] Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels. Steel Res Int, 2018, 89(3): 1700331 doi: 10.1002/srin.201700331
    [21] Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel. Acta Metall Sin, 2019, 55(6): 762 doi: 10.11900/0412.1961.2018.00557

    李博, 張忠鏵, 劉華松, 等. 高強耐蝕管鋼點狀偏析及帶狀缺陷的特征與演變. 金屬學報, 2019, 55(6):762 doi: 10.11900/0412.1961.2018.00557
    [22] Xu Z G, Wang X H, Jiang M, et al. Investigation on formation of equiaxed zone in low carbon steel slabs. Metall Res Technol, 2016, 113(1): 106 doi: 10.1051/metal/2015053
    [23] Wang P, Zhang Z, Tie Z P, et al. Initial transfer behavior and solidification structure evolution in a large continuously cast bloom with a combination of nozzle injection mode and M-EMS. Metals, 2019, 9(10): 1083 doi: 10.3390/met9101083
    [24] Sun H B, Li L J, Wu X X, et al. Effect of subsurface negative segregation induced by M-EMS on componential homogeneity for bloom continuous casting. Metall Res Technol, 2018, 115(6): 603 doi: 10.1051/metal/2018031
    [25] Niu L, Qiu S T, Zhao J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet. J Iron Steel Res, 2018, 30(5): 359

    牛亮, 仇圣桃, 趙俊學, 等. 連鑄工藝參數對38CrMoAl大圓坯碳偏析的影響. 鋼鐵研究學報, 2018, 30(5):359
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數:  741
  • HTML全文瀏覽量:  360
  • PDF下載量:  76
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-01-27
  • 網絡出版日期:  2021-03-08
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回