Macrostructure and macrosegregation behavior of bloom products under various flow control modes of the casting process
-
摘要: 以中碳結構鋼大方坯及其熱軋棒材為研究對象,通過對鑄坯和軋材進行低倍侵蝕和成分分析,揭示了連鑄控流模式對大方坯凝固組織與宏觀偏析分布特征的影響及其鑄軋遺傳性。研究表明:常規直通水口澆注模式下,結晶器電磁攪拌(Mold electromagnetic stirring, M-EMS)電流由0增加到800 A,鑄坯等軸晶率由6.06%僅可增加到11.71%,難以有效避免大方坯常見的中心縮孔缺陷與突出的中心線偏析。采用新型五孔水口澆注模式,即使不開啟M-EMS,鑄坯中心等軸晶率仍可達23.1%,大方坯中心縮孔級別可降至1.0級以下,滿足后續熱軋大棒材探傷要求。同時發現,五孔水口澆注模式下,大方坯鑄態組織中往往會出現較為明顯的柱狀晶到等軸晶轉變(Columnar to equiaxed transition, CET)區,鑄坯斷面碳偏析指數呈M型分布,表現為斷面1/4位置CET區域碳偏析指數最高。大棒材軋制基本改變不了鑄坯斷面宏觀偏析的分布形態,且可能導致中心線偏析指數增加。同時指出,基于連鑄控流模式的作用規律和鑄?軋遺傳性特征,以及特殊鋼長材熱加工對中心致密度和偏析分布與程度的要求,實際生產中應從連鑄工藝源頭合理地控制鑄態組織與宏觀偏析分布形態。Abstract: Owing to the large cross-section and wide solidification-temperature zone, bloom castings of medium- and high-carbon steels are prone to severe central shrinkage and macrosegregation defects. Flow control technologies such as nozzle injection mode and electromagnetic stirring, together with the casting speed, play a key role in the as-cast macrostructure and macrosegregation distribution in bloom castings achieving soundness and compositional homogeneity of the final as-rolled products. Based on the production process of a medium-carbon-steel bloom casting and its heavy section bars, various flow control modes have been adopted in the casting production to study their effects on the semiproduct solidification structure and the carbon distribution across the bloom section and the following rolled bars. The conventional nozzle with a single straight port shows that the equiaxed crystal ratio in the casting process can only increase from 6.06% to 11.71% with the M-EMS intensity changes from 0 to 800 A, in which a shrinkage cavity and macrosegregation exist along the centerline on the strand casting. While the novel five-port nozzle has been adopted, the equiaxed crystal ratio can reach 23.1% even with the M-EMS power off, and the center cavity index drops down to grade 1.0 or below, meeting the requirement of microvoid flaw detection for the bar products. Additionally, the carbon segregation across the bloom cross-section is observed to resemble an M-shaped curve with a maximum carbon segregation index in the columnar to equiaxed transition zone instead of the popular center region. For the heavy section bars rolled from bloom casting, a similar carbon distribution pattern as the cast is observed after hot working but with an even higher centerline segregation index. Therefore, considering the special quality requirements for the subsequent hot processing, the macrostructure and pattern and intensity of macro-segregation should be regulated from the beginning of casting with a reasonable flow control mode as mentioned in the study.
-
圖 6 不同F-EMS參數下熱軋圓棒低倍情況。(a)578-S2A軋材橫截面;(b)578-S2A軋材縱截面;(c)579-S1A軋材橫截面;(d)579-S1A軋材縱截面
Figure 6. Macrostructure of hot-rolled bars under different parameters of the F-EMS: (a) cross-section of 578-S2A;(b) longitudinal section of 578-S2A;(c) cross-section of 579-S1A;(d) longitudinal section of 579-S1A
表 1 大方坯連鑄機及生產工藝基本參數
Table 1. Bloom continuous casting machine and its basic production parameters
Number of
castingsSpacing of each
strand/ mmCross-section/
(mm×mm)Radius of continuous
caster/mMold length/
mmMaximum metallurgical
length/mElectromagnetic stirring
technology3 strands 2200 410×530 16.5 780 34 M-EMS+F-EMS 表 2 45鋼主要化學成分(質量分數)
Table 2. Chemical composition of 45 steel
% C Si Mn Cr Ni S P 0.42–0.50 0.17–0.37 0.5–0.8 ≤0.25 ≤0.25 ≤0.035 ≤0.035 表 3 試樣編號及澆鑄試驗工況
Table 3. Sample numbers and casting conditions
Sample
numberInjection
modeSuperheat
degree/℃Casting speed/
(m·min?1)(Current intensity/A) \
(Frequency/Hz)M-EMS F-EMS 115-S3B Normal nozzle 20 0.38 0\0 700\7.5 115-S3Z Normal nozzle 20 0.38 800\1.5 700\7.5 536-S1B Five-port nozzle 33 0.38 0\0 700\7.5 536-S2B Five-port nozzle 33 0.38 300\1.5 700\7.5 578-S2A Five-port nozzle 28 0.38 500\1.5 660\7.5 579-S1A Five-port nozzle 28 0.38 500\1.5 800\5 579-S3B Five-port nozzle 28 0.40 500\1.5 800\5 579-S2B Five-port nozzle 28 0.42 500\1.5 800\5 www.77susu.com -
參考文獻
[1] Wang P, Li S X, Zhang Z, et al. Effect of combined stirring modes on the solidification behavior of special steel bloom casting. J Mech Eng, 2020, 56(12): 99 doi: 10.3901/JME.2020.12.099王璞, 李少翔, 張壯, 等. 組合攪拌模式對連鑄特殊鋼大方坯凝固行為的影響. 機械工程學報, 2020, 56(12):99 doi: 10.3901/JME.2020.12.099 [2] Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmak Steelmak, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039 [3] Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process. Metall Mater Trans B, 2017, 48(1): 444 doi: 10.1007/s11663-016-0864-x [4] Ayata K, Mori T, Fujimoto T, et al. Improvement of macrosegregation in continuously cast bloom and billet by electromagnetic stirring. Trans Iron Steel Inst Jpn, 1984, 24(11): 931 doi: 10.2355/isijinternational1966.24.931 [5] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y [6] Wu Q M, Xu W Y, Yan H C, et al. Carbon macro-segregation control of rolled bar produced from cast bloom of 20CrMnTiH steel. Iron Steel, 2012, 47(5): 23吳清明, 許偉陽, 顏慧成, 等. 20CrMnTiH齒輪鋼大方坯軋制圓鋼宏觀碳偏析控制. 鋼鐵, 2012, 47(5):23 [7] Sun H B, Zhang J Q. Study on the macrosegregation behavior for the bloom continuous casting: Model development and validation. Metall Mater Trans B, 2014, 45(3): 1133 doi: 10.1007/s11663-013-9986-6 [8] Wang P, Tie Z P, Li S X, et al. Effect of M-EMS current intensity on the subsurface segregation and internal solidification structure for bloom casting of 42CrMo steel. Ironmak Steelmak, 2021: 1 [9] An H H, Bao Y P, Wang M, et al. Effect of combining F-EMS and MSR on the segregation and shrinkage cavity in continuously cast high-carbon steel blooms. Chin J Eng, 2017, 39(7): 996安航航, 包燕平, 王敏, 等. 凝固末端電磁攪拌和輕壓下復合技術對大方坯高碳鋼偏析和中心縮孔的影響. 工程科學學報, 2017, 39(7):996 [10] Ding N, Bao Y P, Sun Q S, et al. Location determination of final electromagnetic stirring and its effect on central carbon segregation for SWRH82B steel. J Univ Sci Technol Beijing, 2011, 33(1): 17丁寧, 包燕平, 孫奇松, 等. 末端電磁攪拌位置確定及對SWRH82B鋼中心偏析的影響. 北京科技大學學報, 2011, 33(1):17 [11] Wang B, Xie Z, Jia G L, et al. Parameter determination and effects on center segregation of F-EMS. Iron Steel, 2007, 42(3): 18 doi: 10.3321/j.issn:0449-749X.2007.03.005王彪, 謝植, 賈光霖, 等. 凝固末端電磁攪拌參數確定及其對中心偏析的影響. 鋼鐵, 2007, 42(3):18 doi: 10.3321/j.issn:0449-749X.2007.03.005 [12] Wang X D, Wang B F, Cao J G, et al. Determination of F-EMS position and process parameters in bloom continuous caster. Iron Steel, 2011, 46(8): 40王曉東, 王寶峰, 曹建剛, 等. 大方坯末端電磁攪拌位置和連鑄工藝參數的確定. 鋼鐵, 2011, 46(8):40 [13] Li S X, Han Z Q, Zhang J Q. Numerical modeling of the macrosegregation improvement in continuous casting blooms by using F-EMS. JOM, 2020, 72(11): 4117 doi: 10.1007/s11837-020-04363-6 [14] Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom. Iron Steel, 2018, 53(8): 49陳亮, 宋波, 陳天明, 等. 45鋼連鑄大方坯中心疏松與縮孔控制. 鋼鐵, 2018, 53(8):49 [15] Sun H B, Zhang J Q. Macrosegregation improvement by swirling flow nozzle for bloom continuous castings. Metall Mater Trans B, 2014, 45(3): 936 doi: 10.1007/s11663-013-9999-1 [16] Sun H B, Han Z G, Qian H Z, et al. Effects of injection modes on the flow pattern and temperature distribution of molten steel in a bloom casting mould. J Univ Sci Technol Beijing, 2010, 32(9): 1131孫海波, 韓占光, 錢宏智, 等. 注流方式對大方坯連鑄結晶器內鋼水流動與溫度狀態影響. 北京科技大學學報, 2010, 32(9):1131 [17] Cheng X W, Fu Q H, Dai F Q, et al. Application of swirling flow nozzle technology for bloom continuous castings. Steelmaking, 2015, 31(5): 32程曉文, 付謙惠, 戴方欽, 等. 旋流水口澆鑄技術在大方坯連鑄的應用研究. 煉鋼, 2015, 31(5):32 [18] Wang P, Li S X, Tang H Y, et al. Swirling flow effect of radial outlet nozzle for bloom and its effect on initial solidification. China Metall, 2019, 29(9): 15王璞, 李少翔, 唐海燕, 等. 大方坯徑向水口旋流效應及其對凝固的影響. 中國冶金, 2019, 29(9):15 [19] Xu W Y. The Formation and Control of Carbon Segregation of Gear Steel in the Bloom Casting Process [Dissertation]. Beijing: Central Iron and Steel Research Institute, 2012許偉陽. 連鑄齒輪鋼矩形坯碳“錠型”偏析的形成與控制[學位論文]. 北京: 鋼鐵研究總院, 2012 [20] Ji Y, Lan P, Geng H, et al. Behavior of spot segregation in continuously cast blooms and the resulting segregated band in oil pipe steels. Steel Res Int, 2018, 89(3): 1700331 doi: 10.1002/srin.201700331 [21] Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel. Acta Metall Sin, 2019, 55(6): 762 doi: 10.11900/0412.1961.2018.00557李博, 張忠鏵, 劉華松, 等. 高強耐蝕管鋼點狀偏析及帶狀缺陷的特征與演變. 金屬學報, 2019, 55(6):762 doi: 10.11900/0412.1961.2018.00557 [22] Xu Z G, Wang X H, Jiang M, et al. Investigation on formation of equiaxed zone in low carbon steel slabs. Metall Res Technol, 2016, 113(1): 106 doi: 10.1051/metal/2015053 [23] Wang P, Zhang Z, Tie Z P, et al. Initial transfer behavior and solidification structure evolution in a large continuously cast bloom with a combination of nozzle injection mode and M-EMS. Metals, 2019, 9(10): 1083 doi: 10.3390/met9101083 [24] Sun H B, Li L J, Wu X X, et al. Effect of subsurface negative segregation induced by M-EMS on componential homogeneity for bloom continuous casting. Metall Res Technol, 2018, 115(6): 603 doi: 10.1051/metal/2018031 [25] Niu L, Qiu S T, Zhao J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet. J Iron Steel Res, 2018, 30(5): 359牛亮, 仇圣桃, 趙俊學, 等. 連鑄工藝參數對38CrMoAl大圓坯碳偏析的影響. 鋼鐵研究學報, 2018, 30(5):359 -