<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

深錐固體通量與絮凝劑單耗和料漿濃度的數學關系

王勇 曹晨 吳愛祥

王勇, 曹晨, 吳愛祥. 深錐固體通量與絮凝劑單耗和料漿濃度的數學關系[J]. 工程科學學報, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
引用本文: 王勇, 曹晨, 吳愛祥. 深錐固體通量與絮凝劑單耗和料漿濃度的數學關系[J]. 工程科學學報, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
WANG Yong, CAO Chen, WU Ai-xiang. Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration[J]. Chinese Journal of Engineering, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002
Citation: WANG Yong, CAO Chen, WU Ai-xiang. Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration[J]. Chinese Journal of Engineering, 2021, 43(10): 1269-1275. doi: 10.13374/j.issn2095-9389.2021.01.25.002

深錐固體通量與絮凝劑單耗和料漿濃度的數學關系

doi: 10.13374/j.issn2095-9389.2021.01.25.002
基金項目: 國家自然科學基金資助項目(52042402, 51834001);中央高校基本科研業務費青年教師國際交流成長計劃項目(QNXM20210002);中央高校基本科研業務費資助項目(FRF-IDRY-20-031,FRF-TP-19-002C2Z)
詳細信息
    作者簡介:

    吳愛祥,等.超細全尾砂靜態絮凝沉降規律及其在立式砂倉設計中的應用.化工礦物與加工,2019,48(3):35)

    通訊作者:

    E-mail: wuaixiang@126.com

  • 中圖分類號: TD85

Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration

More Information
  • 摘要: 深錐濃密機的面積或占地大小主要由其固體通量決定。通過量筒靜態沉降實驗,計算得到深錐濃密機固體通量,分析了絮凝劑單耗、料漿濃度對深錐濃密機固體通量的影響,得到了兩種因素對深錐濃密機固體通量的影響規律。結果表明,尾礦在5~30 g·t?1的絮凝劑單耗下,基本呈現二次函數關系;料漿的固相質量分數為6%~26%時,固體通量呈現先增大后減小的趨勢,與實驗所得的規律相契合。通過對絮凝劑單耗和料漿濃度耦合效應下的固體通量方程回歸分析,得到三者之間的數學關系,進而確定二者對固體通量的貢獻為:料漿濃度>絮凝劑單耗。結合絮凝劑及料漿濃度對固體通量的影響分析,總結了絮凝劑單耗和料漿濃度貢獻值不同的原因。最后,結合單因素和耦合條件下的數學方程,對深錐濃密機的設計和運行提出工程建議。在深錐濃密機運行過程中,需要優先保證料漿濃度,其次是絮凝劑單耗。

     

  • 圖  1  全尾砂粒級組成曲線

    Figure  1.  Particle size distribution curve of full tailings

    圖  2  自制砂漿攪拌裝置混合、沉降過程

    Figure  2.  Mixing and settling processes by homemade mortar mixing unit

    圖  3  不同絮凝劑單耗與固體通量關系

    Figure  3.  Relationship between solid fluxes per unit consumption of different flocculants

    圖  4  不同料漿濃度與固體通量關系

    Figure  4.  Relationships between different slurry concentrations and solid fluxes

    圖  5  高分子絮凝作用

    Figure  5.  Polymer flocculation

    表  1  全尾砂基本物理性質

    Table  1.   Basic physical properties of full tailings

    True density/
    (t·m?3)
    Unit weight/
    (t·m?3)
    Porosity/
    %
    Theoretical
    saturation/%
    2.751.6440.3680.25
    下載: 導出CSV

    表  2  不同絮凝劑單耗實驗配料表

    Table  2.   Experimental ingredient list for different flocculant unit consumptions

    Order numberQuality of tailings/gQuality of water/gFlocculant unit consumptions/(g·t?1)Flocculant addition/g
    111089050.183
    2110890100.367
    3110890150.550
    4110890200.733
    5110890250.917
    6110890301.100
    下載: 導出CSV

    表  3  配料表

    Table  3.   Ingredient list

    Order numberMass fraction
    of solid
    phase/%
    Quality
    of tailings/
    g
    Quality of
    water/g
    Flocculant unit
    consumptions/
    (g·t?1)
    Flocculant
    addition/g
    1660940150.3
    211110890150.55
    316160840150.8
    421210790151.05
    526260740151.3
    6660940200.4
    711110890200.73
    816160840201.07
    921210790201.4
    1026260740201.73
    下載: 導出CSV

    表  4  不同絮凝劑單耗絮凝沉降實驗結果及固體通量計算結果

    Table  4.   Results of flocculation and sedimentation experiments with different flocculants and solid flux calculations

    Order numberFlocculant unit consumptions/
    (g·t?1)
    Initial height/
    mm
    Time of settlement/sHeight of settlement/
    mm
    Solid flux/
    (t·d?1·m?2)
    15268523561.753
    2102685205117.89
    3152685180164.67
    4202685160202.1
    5252685155211.46
    6302685150220.81
    下載: 導出CSV

    表  5  不同料漿濃度絮凝沉降實驗結果及固體通量計算結果

    Table  5.   Results of flocculation and sedimentation experiments with different slurry concentrations and calculation of solid fluxes

    Order numberMass
    fraction
    of solid
    phase/%
    Flocculant unit
    consumptions/
    (g·t?1)
    Initial height/
    mm
    Time of
    settlement/s
    Height of
    settlement/mm
    Solid
    flux/
    (t·d?1·
    m?2)
    1615276519084.877
    211152685180164.67
    316152605203160.64
    421152495209153.4
    526152435213147.87
    66202765155119.42
    711202685150220.81
    816202605190197.28
    921202495199191.75
    1026202435206182.37
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51

    吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51
    [2] Yuan Z L, Hu J L, Wu D, et al. A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction. Sensors, 2020, 20(5): 1260 doi: 10.3390/s20051260
    [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [4] Wu H P, Cao W B, Zhang C P. Test study on the law of dense settlement of full tailings. Modern Mining, 2020, 36(04): 143 doi: 10.3969/j.issn.1674-6082.2020.04.041

    吳和平, 曹萬寶, 張春鵬. 全尾砂濃密沉降規律試驗研究. 現代礦業, 2020, 36(04):143 doi: 10.3969/j.issn.1674-6082.2020.04.041
    [5] Wu W X, Miao Z X, Long J, et al. Research progress on dynamic characteristics of particle sedimentation. Met Mine, 2019(6): 27

    吳維新, 苗子旭, 龍佳, 等. 顆粒沉降動力學特性研究進展. 金屬礦山, 2019(6):27
    [6] Wang X T, Cui B Y, Wei D Z, et al. Numerical simulation on characteristics of internal flow field in flocculation agitator. J Northeast Univ Nat Sci, 2018, 39(10): 1442 doi: 10.12068/j.issn.1005-3026.2018.10.015

    王學濤, 崔寶玉, 魏德洲, 等. 絮凝攪拌器內部流場特性數值模擬. 東北大學學報(自然科學版), 2018, 39(10):1442 doi: 10.12068/j.issn.1005-3026.2018.10.015
    [7] Chen D, Song W D, Wu S. Experiment on the flocculation settlement properties of total tailings slurry. Nonferrous Met (Min Sect), 2016, 68(4): 41

    陳達, 宋衛東, 吳姍. 全尾砂料漿絮凝沉降特性試驗研究. 有色金屬(礦山部分), 2016, 68(4):41
    [8] Bian J W, Wang H, Xiao C C, et al. An experimental study on the flocculating settling of unclassified tailings. PLoS One, 2018, 13(9): e0204230 doi: 10.1371/journal.pone.0204230
    [9] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
    [10] Quezada G R, Jeldres M, Toro N, et al. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf A:Physicochem Eng Aspects, 2021, 608: 125576 doi: 10.1016/j.colsurfa.2020.125576
    [11] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419

    王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419
    [12] Zhang M D, Rao Y Z, Xu W F, et al. Experimental study on static flocculation and settlement of full tailing mortar in a mine. Met Mine, 2020(12): 50

    張美道, 饒運章, 徐文峰, 等. 某礦全尾砂漿靜態絮凝沉降試驗研究. 金屬礦山, 2020(12):50
    [13] Wang Y, Wu A X, Wang H J, et al. Effect of flocculation and dilution on the tailings setting performance and project proposal. J Wuhan Univ Technol, 2014, 36(9): 114

    王勇, 吳愛祥, 王洪江, 等. 絮凝和稀釋對尾礦沉降性能的影響及工程建議. 武漢理工大學學報, 2014, 36(9):114
    [14] Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022

    侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022
    [15] Wang J, Qiao D P, Han R S, et al. Consecutive discharge tailings model of vertical sand silo and its application. Chin J Nonferrous Met, 2020, 30(1): 235 doi: 10.11817/j.ysxb.1004.0609.2020-35704

    王俊, 喬登攀, 韓潤生, 等. 立式砂倉連續放砂模型及應用. 中國有色金屬學報, 2020, 30(1):235 doi: 10.11817/j.ysxb.1004.0609.2020-35704
    [16] Li G C, Wang H J, Wu A X, et al. Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener. Chin J Eng, 2019, 41(1): 60

    李公成, 王洪江, 吳愛祥, 等. 全尾砂無耙深錐穩態濃密性能分析. 工程科學學報, 2019, 41(1):60
    [17] Chen X Z, Guo L J, Xu W Y, et al. Method for determining deep cone thickener size based on batch settling test. Nonferrous Met Min Sect, 2020, 72(6): 107

    陳鑫政, 郭利杰, 許文遠, 等. 基于尾礦沉降試驗的深錐濃密機尺寸確定方法. 有色金屬(礦山部分), 2020, 72(6):107
    [18] Shi C X, Guo L J, Chen X. Static and dynamic flocculation sedimentation characteristics of unclassified tailings. Chin J Nonferrous Met, 2021, 31(1): 194 doi: 10.11817/j.ysxb.1004.0609.2021-37715

    史采星, 郭利杰, 陳新. 全尾砂靜動態絮凝沉降特性. 中國有色金屬學報, 2021, 31(1):194 doi: 10.11817/j.ysxb.1004.0609.2021-37715
    [19] Zhao X, Guo Y B. Theoretical analysis and application of thickener design. J Taiyuan Univ Sci Technol, 2013, 34(1): 37 doi: 10.3969/j.issn.1673-2057.2013.01.008

    趙鑫, 郭亞兵. 濃縮機設計理論分析及應用. 太原科技大學學報, 2013, 34(1):37 doi: 10.3969/j.issn.1673-2057.2013.01.008
    [20] Stokes G G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans Cambridge Philos Soc, 1850, 9: 8
    [21] Peng N B, Wu A X, Wang H J, et al. Research on flocculation sedimentation technology of unclassified-tailings. Min Res Dev, 2015, 35(7): 35

    彭乃兵, 吳愛祥, 王洪江, 等. 全尾砂絮凝沉降工藝研究. 礦業研究與開發, 2015, 35(7):35
    [22] Yang Z, Shang Y B, Lu Y B, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem Eng J, 2011, 172(1): 287 doi: 10.1016/j.cej.2011.05.106
    [23] M Dash, R K Dwari, S K Biswal, et al. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings. Chem Eng J, 2011, 173(2): 318 doi: 10.1016/j.cej.2011.07.034
    [24] Yao G X. Coarse Particle Settling Properties Study Based on Particle Analysis [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2014

    姚國新. 基于顆粒受力的粗顆粒沉降性質研究[學位論文]. 贛州: 江西理工大學, 2014
    [25] Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 2011
    [26] Sun H, Li M L, Cui R, et al. Influence of different flocculants on settling effect of lead-zinc tailings. Conserv Util Miner Resour, 2021, 41(1): 66

    孫浩, 李茂林, 崔瑞, 等. 不同絮凝劑對鉛鋅尾礦沉降效果的影響. 礦產保護與利用, 2021, 41(1):66
    [27] Niu P, Wang H J, Wu A X, et al. Static flocculation and sedimentation rule of ultrafine whole tailings and its application in design of vertical sand Bin. Ind Miner Process, 2019, 48(3): 35

    牛鵬, 王洪江, 吳愛祥, 等. 超細全尾砂靜態絮凝沉降規律及其在立式砂倉設計中的應用. 化工礦物與加工, 2019, 48(3):35
  • 加載中
圖(5) / 表(5)
計量
  • 文章訪問數:  626
  • HTML全文瀏覽量:  281
  • PDF下載量:  104
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-25
  • 網絡出版日期:  2021-04-20
  • 刊出日期:  2021-10-12

目錄

    /

    返回文章
    返回