Mathematical relationship between the solid flux of deep cone thickener, flocculant unit consumption, and slurry concentration
-
摘要: 深錐濃密機的面積或占地大小主要由其固體通量決定。通過量筒靜態沉降實驗,計算得到深錐濃密機固體通量,分析了絮凝劑單耗、料漿濃度對深錐濃密機固體通量的影響,得到了兩種因素對深錐濃密機固體通量的影響規律。結果表明,尾礦在5~30 g·t?1的絮凝劑單耗下,基本呈現二次函數關系;料漿的固相質量分數為6%~26%時,固體通量呈現先增大后減小的趨勢,與實驗所得的規律相契合。通過對絮凝劑單耗和料漿濃度耦合效應下的固體通量方程回歸分析,得到三者之間的數學關系,進而確定二者對固體通量的貢獻為:料漿濃度>絮凝劑單耗。結合絮凝劑及料漿濃度對固體通量的影響分析,總結了絮凝劑單耗和料漿濃度貢獻值不同的原因。最后,結合單因素和耦合條件下的數學方程,對深錐濃密機的設計和運行提出工程建議。在深錐濃密機運行過程中,需要優先保證料漿濃度,其次是絮凝劑單耗。Abstract: Tailings thickening is an important process of paste filling technology. At present, a deep cone thickener is often used for tailings thickening. The sedimentation rate of tailings affects the solid flux of the deep cone thickener and determines the area occupied by the deep cone thickener. At present, the addition of flocculant to tailings has become a common practice to improve the efficiency of tailings thickening. Thus, the influence of various factors on the solid flux of the deep cone thickener needs to be investigated. In this study, the solid flux of the deep cone thickener was calculated through the static sedimentation experiment of the graduated cylinder, and the influence law of the flocculant unit consumption and slurry concentration on the solid flux of the deep cone thickener was analyzed, and the influence of the two factors on the solid flux of the deep cone thickener was determined. Results showed that the tailings exhibit a quadratic function relationship when the flocculant unit consumption is 5–30 g·t?1. At 6%–26% solid mass fraction of slurry, the solid flux first increases and then decreases, which is consistent with the experiment. The regression analysis of the solid flux equation under the coupling effect of flocculant unit consumption and slurry concentration shows that the contribution of the two factors to solid flux is slurry concentration > flocculant unit consumption. Based on the analysis of the influence of flocculant unit consumption and slurry concentration on solid flux, the reasons for the different contribution values of flocculant unit consumption and slurry concentration were summarized. According to the mathematical relationship between flocculant unit consumption, slurry concentration, and solid flux obtained from the research, engineering suggestions for the design and operation of the deep cone thickener were proposed. During the operation of the deep cone thickener, the slurry concentration should be guaranteed first, followed by the flocculant unit consumption.
-
表 1 全尾砂基本物理性質
Table 1. Basic physical properties of full tailings
True density/
(t·m?3)Unit weight/
(t·m?3)Porosity/
%Theoretical
saturation/%2.75 1.64 40.36 80.25 表 2 不同絮凝劑單耗實驗配料表
Table 2. Experimental ingredient list for different flocculant unit consumptions
Order number Quality of tailings/g Quality of water/g Flocculant unit consumptions/(g·t?1) Flocculant addition/g 1 110 890 5 0.183 2 110 890 10 0.367 3 110 890 15 0.550 4 110 890 20 0.733 5 110 890 25 0.917 6 110 890 30 1.100 表 3 配料表
Table 3. Ingredient list
Order number Mass fraction
of solid
phase/%Quality
of tailings/
gQuality of
water/gFlocculant unit
consumptions/
(g·t?1)Flocculant
addition/g1 6 60 940 15 0.3 2 11 110 890 15 0.55 3 16 160 840 15 0.8 4 21 210 790 15 1.05 5 26 260 740 15 1.3 6 6 60 940 20 0.4 7 11 110 890 20 0.73 8 16 160 840 20 1.07 9 21 210 790 20 1.4 10 26 260 740 20 1.73 表 4 不同絮凝劑單耗絮凝沉降實驗結果及固體通量計算結果
Table 4. Results of flocculation and sedimentation experiments with different flocculants and solid flux calculations
Order number Flocculant unit consumptions/
(g·t?1)Initial height/
mmTime of settlement/s Height of settlement/
mmSolid flux/
(t·d?1·m?2)1 5 268 5 235 61.753 2 10 268 5 205 117.89 3 15 268 5 180 164.67 4 20 268 5 160 202.1 5 25 268 5 155 211.46 6 30 268 5 150 220.81 表 5 不同料漿濃度絮凝沉降實驗結果及固體通量計算結果
Table 5. Results of flocculation and sedimentation experiments with different slurry concentrations and calculation of solid fluxes
Order number Mass
fraction
of solid
phase/%Flocculant unit
consumptions/
(g·t?1)Initial height/
mmTime of
settlement/sHeight of
settlement/mmSolid
flux/
(t·d?1·
m?2)1 6 15 276 5 190 84.877 2 11 15 268 5 180 164.67 3 16 15 260 5 203 160.64 4 21 15 249 5 209 153.4 5 26 15 243 5 213 147.87 6 6 20 276 5 155 119.42 7 11 20 268 5 150 220.81 8 16 20 260 5 190 197.28 9 21 20 249 5 199 191.75 10 26 20 243 5 206 182.37 www.77susu.com -
參考文獻
[1] Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51 [2] Yuan Z L, Hu J L, Wu D, et al. A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction. Sensors, 2020, 20(5): 1260 doi: 10.3390/s20051260 [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [4] Wu H P, Cao W B, Zhang C P. Test study on the law of dense settlement of full tailings. Modern Mining, 2020, 36(04): 143 doi: 10.3969/j.issn.1674-6082.2020.04.041吳和平, 曹萬寶, 張春鵬. 全尾砂濃密沉降規律試驗研究. 現代礦業, 2020, 36(04):143 doi: 10.3969/j.issn.1674-6082.2020.04.041 [5] Wu W X, Miao Z X, Long J, et al. Research progress on dynamic characteristics of particle sedimentation. Met Mine, 2019(6): 27吳維新, 苗子旭, 龍佳, 等. 顆粒沉降動力學特性研究進展. 金屬礦山, 2019(6):27 [6] Wang X T, Cui B Y, Wei D Z, et al. Numerical simulation on characteristics of internal flow field in flocculation agitator. J Northeast Univ Nat Sci, 2018, 39(10): 1442 doi: 10.12068/j.issn.1005-3026.2018.10.015王學濤, 崔寶玉, 魏德洲, 等. 絮凝攪拌器內部流場特性數值模擬. 東北大學學報(自然科學版), 2018, 39(10):1442 doi: 10.12068/j.issn.1005-3026.2018.10.015 [7] Chen D, Song W D, Wu S. Experiment on the flocculation settlement properties of total tailings slurry. Nonferrous Met (Min Sect) , 2016, 68(4): 41陳達, 宋衛東, 吳姍. 全尾砂料漿絮凝沉降特性試驗研究. 有色金屬(礦山部分), 2016, 68(4):41 [8] Bian J W, Wang H, Xiao C C, et al. An experimental study on the flocculating settling of unclassified tailings. PLoS One, 2018, 13(9): e0204230 doi: 10.1371/journal.pone.0204230 [9] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783 [10] Quezada G R, Jeldres M, Toro N, et al. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf A:Physicochem Eng Aspects, 2021, 608: 125576 doi: 10.1016/j.colsurfa.2020.125576 [11] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419 [12] Zhang M D, Rao Y Z, Xu W F, et al. Experimental study on static flocculation and settlement of full tailing mortar in a mine. Met Mine, 2020(12): 50張美道, 饒運章, 徐文峰, 等. 某礦全尾砂漿靜態絮凝沉降試驗研究. 金屬礦山, 2020(12):50 [13] Wang Y, Wu A X, Wang H J, et al. Effect of flocculation and dilution on the tailings setting performance and project proposal. J Wuhan Univ Technol, 2014, 36(9): 114王勇, 吳愛祥, 王洪江, 等. 絮凝和稀釋對尾礦沉降性能的影響及工程建議. 武漢理工大學學報, 2014, 36(9):114 [14] Hou H Z, Li C P, Wang S Y, et al. Settling velocity variation of mud layer and particle settling characteristics in thickening of tailings. J Central South Univ Sci Technol, 2019, 50(6): 1428 doi: 10.11817/j.issn.1672-7207.2019.06.022侯賀子, 李翠平, 王少勇, 等. 尾礦濃密中泥層沉降速度變化及顆粒沉降特性. 中南大學學報(自然科學版), 2019, 50(6):1428 doi: 10.11817/j.issn.1672-7207.2019.06.022 [15] Wang J, Qiao D P, Han R S, et al. Consecutive discharge tailings model of vertical sand silo and its application. Chin J Nonferrous Met, 2020, 30(1): 235 doi: 10.11817/j.ysxb.1004.0609.2020-35704王俊, 喬登攀, 韓潤生, 等. 立式砂倉連續放砂模型及應用. 中國有色金屬學報, 2020, 30(1):235 doi: 10.11817/j.ysxb.1004.0609.2020-35704 [16] Li G C, Wang H J, Wu A X, et al. Analysis of thickening performance of unclassified tailings in rakeless deep cone thickener. Chin J Eng, 2019, 41(1): 60李公成, 王洪江, 吳愛祥, 等. 全尾砂無耙深錐穩態濃密性能分析. 工程科學學報, 2019, 41(1):60 [17] Chen X Z, Guo L J, Xu W Y, et al. Method for determining deep cone thickener size based on batch settling test. Nonferrous Met Min Sect, 2020, 72(6): 107陳鑫政, 郭利杰, 許文遠, 等. 基于尾礦沉降試驗的深錐濃密機尺寸確定方法. 有色金屬(礦山部分), 2020, 72(6):107 [18] Shi C X, Guo L J, Chen X. Static and dynamic flocculation sedimentation characteristics of unclassified tailings. Chin J Nonferrous Met, 2021, 31(1): 194 doi: 10.11817/j.ysxb.1004.0609.2021-37715史采星, 郭利杰, 陳新. 全尾砂靜動態絮凝沉降特性. 中國有色金屬學報, 2021, 31(1):194 doi: 10.11817/j.ysxb.1004.0609.2021-37715 [19] Zhao X, Guo Y B. Theoretical analysis and application of thickener design. J Taiyuan Univ Sci Technol, 2013, 34(1): 37 doi: 10.3969/j.issn.1673-2057.2013.01.008趙鑫, 郭亞兵. 濃縮機設計理論分析及應用. 太原科技大學學報, 2013, 34(1):37 doi: 10.3969/j.issn.1673-2057.2013.01.008 [20] Stokes G G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans Cambridge Philos Soc, 1850, 9: 8 [21] Peng N B, Wu A X, Wang H J, et al. Research on flocculation sedimentation technology of unclassified-tailings. Min Res Dev, 2015, 35(7): 35彭乃兵, 吳愛祥, 王洪江, 等. 全尾砂絮凝沉降工藝研究. 礦業研究與開發, 2015, 35(7):35 [22] Yang Z, Shang Y B, Lu Y B, et al. Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem Eng J, 2011, 172(1): 287 doi: 10.1016/j.cej.2011.05.106 [23] M Dash, R K Dwari, S K Biswal, et al. Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings. Chem Eng J, 2011, 173(2): 318 doi: 10.1016/j.cej.2011.07.034 [24] Yao G X. Coarse Particle Settling Properties Study Based on Particle Analysis [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2014姚國新. 基于顆粒受力的粗顆粒沉降性質研究[學位論文]. 贛州: 江西理工大學, 2014 [25] Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles. Boca Raton: CRC Press, 2011 [26] Sun H, Li M L, Cui R, et al. Influence of different flocculants on settling effect of lead-zinc tailings. Conserv Util Miner Resour, 2021, 41(1): 66孫浩, 李茂林, 崔瑞, 等. 不同絮凝劑對鉛鋅尾礦沉降效果的影響. 礦產保護與利用, 2021, 41(1):66 [27] Niu P, Wang H J, Wu A X, et al. Static flocculation and sedimentation rule of ultrafine whole tailings and its application in design of vertical sand Bin. Ind Miner Process, 2019, 48(3): 35牛鵬, 王洪江, 吳愛祥, 等. 超細全尾砂靜態絮凝沉降規律及其在立式砂倉設計中的應用. 化工礦物與加工, 2019, 48(3):35 -