<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

埃洛石納米管的疏水改性及其復合材料的研究進展

曾麗 韻勤柏 魯啟鵬 曹文斌

曾麗, 韻勤柏, 魯啟鵬, 曹文斌. 埃洛石納米管的疏水改性及其復合材料的研究進展[J]. 工程科學學報, 2021, 43(6): 732-744. doi: 10.13374/j.issn2095-9389.2021.01.24.001
引用本文: 曾麗, 韻勤柏, 魯啟鵬, 曹文斌. 埃洛石納米管的疏水改性及其復合材料的研究進展[J]. 工程科學學報, 2021, 43(6): 732-744. doi: 10.13374/j.issn2095-9389.2021.01.24.001
ZENG Li, YUN Qin-bai, LU Qi-peng, CAO Wen-bin. Research progress of hydrophobically modified Halloysite nanotube-based composite materials[J]. Chinese Journal of Engineering, 2021, 43(6): 732-744. doi: 10.13374/j.issn2095-9389.2021.01.24.001
Citation: ZENG Li, YUN Qin-bai, LU Qi-peng, CAO Wen-bin. Research progress of hydrophobically modified Halloysite nanotube-based composite materials[J]. Chinese Journal of Engineering, 2021, 43(6): 732-744. doi: 10.13374/j.issn2095-9389.2021.01.24.001

埃洛石納米管的疏水改性及其復合材料的研究進展

doi: 10.13374/j.issn2095-9389.2021.01.24.001
基金項目: 國家自然科學基金資助項目(52041201);北京市科技新星資助項目(Z201100006820066);中央高校基本科研業務費專項資金資助項目(FRF-DF-20-03)
詳細信息
    通訊作者:

    E-mail: qipeng@ustb.edu.cn

  • 中圖分類號: TG174.1

Research progress of hydrophobically modified Halloysite nanotube-based composite materials

More Information
  • 摘要: 埃洛石是一種卷曲的層狀硅鋁酸鹽黏土,其儲量豐富、價格低廉。埃洛石的內外表面分別由Al?OH八面體和Si?O四面體組成,它們在水中以相反的方式電離,導致埃洛石管腔內帶正電荷,外表面帶負電荷,因此可分別利用內外表面成分與電荷性質的不同對其進行疏水改性,用于藥物的裝載和緩釋。同時,埃洛石具有納米管狀結構,可用來構造微?納米分級結構,協同低表面能物質的修飾,增強界面疏水性能,用于高效自清潔和油水分離。本文在介紹埃洛石的疏水結構設計理論的基礎上,綜述了埃洛石納米管(HNTs)的表面進行疏水改性所得到的復合材料在油水分離、疏水自清潔涂料以及藥物的裝載和釋放方面的應用。

     

  • 圖  1  HNTs形態圖(a)(內表面為Al?OH層(綠色),外表面為Si?O層(紅色));HNTs的晶體結構示意圖(b);HNTs內表面的選擇性修飾(c);HNTs(紫色)、二氧化硅(藍色)和氧化鋁(紅色)納米顆粒的ζ電位比較(d);陰離子和陽離子選擇性吸附在HNTs的內/外表面(e);硅氧烷包覆黏土材料的透射電鏡圖(f)[23, 25, 31-32]

    Figure  1.  Morphology (a) of halloysite nanotubes: alumina forms on the inside surface (green) and silica on the outside surface (red); schematic illustration (b) of the crystalline structure of halloysite; selective modification of HNTs (c); comparison of ζ-potential curves for halloysite nanotubes (violet), silica (blue), and alumina (red) nanoparticles (d); scheme of selective anionic and cationic amphiphile molecules adsorbed inside and outside of the halloysite nanotubes, respectively (e); TEM image (f) of PAL@fluoroPOS composites[23, 25, 31-32]

    圖  2  HNTs@POS涂層的合成示意圖(a);涂層的水接觸角(b)和滾動角(c);亞甲基藍染色的水在不同基體涂層上以及不同液體在涂層上的實物圖(d)[10]

    Figure  2.  Schematic illustration (a) of the synthesis of the HNTs@POS; water contact angle (b) and slide angle (c) images of the hydrophobic HNTs@POS coatings; photographs (d) of water (dyed with methylene blue) on the hydrophobic HNTs coating sprayed on different substrates and photographs of 1 mol·L?1 HCl, 1 mol·L?1 NaOH, tea, water, and milk droplets on the hydrophobic HNTs coating[10]

    圖  3  PP/HNTs球晶結構形成的假想機理示意圖(a);PP與PP/HNTs復合材料表面的水接觸角和滾動角(b);PP及其復合材料在空氣中的熱重曲線(c);PP和PP/HNTs復合材料的掃描電鏡照片:(d, e)純PP;(f, g)85% PP,15% HNTs;(h,i)60%PP,40% HNTs[77]

    Figure  3.  Schematic (a) of the hypothetical formation mechanism of PP/HNTs hybrid spherulite superstructure; water contact angles and sliding angles (b) of the PP and PP/HNTs composite surfaces; TGA curves (c) of PP and PP/HNTs composites in air; SEM images of PP and PP/HNTs composites: (d, e) pure PP; (f, g) 85% PP, 15% HNTs; (h, i) 60%PP, 40% HNTs[77]

    圖  4  油水分離原理圖

    Figure  4.  Schematic diagram of oil-water separation

    圖  5  制備和改性海綿的工藝示意圖(a);海綿形貌的掃描電鏡圖像(b);油水分離實驗裝置(c);海綿的孔隙度和密度(d);復合海綿改性前后的水接觸角(e);改性的復合海綿對有機試劑的最大吸油能力(每克改性復合海綿吸收有機試劑質量)(f);改性的復合海綿對葵花籽油的循環吸收能力(g)[86]

    Figure  5.  Schematic illustration (a) of the preparation process of modified sponges; SEM images (b) of the morphologies of sponges; oil-water separation experiment (c); the porosity and density of sponges (d); water contact angles (e) of composite sponges before and after modification; the maximum oil absorption ratios of organic solvent (f); cycle absorption capacity of sunflower seed oil (g)[86]

    圖  6  二氯甲烷(油紅染色)/水(亞甲基藍染色)混合物(a);油水混合物的分離過程(b~c)[10];合成超疏水高聚物基狀結構的示意圖(d);水接觸角和滾動角圖像(e);涂層網格對不同油水混合物分離效率(f)[87]

    Figure  6.  Dichloromethane (dyed with oil red)/water (dyed with methylene blue) mixture (a); the separation processes (b?c) of the oil/water mixture using the coated mesh[10]; schematic illustration (d) of the fabrication of the superhydrophobic halloysite-based mesh; the water contact angle and slide angle on the mesh (e); efficiency of different oil-water mixture separations with the coated mesh (f)[87]

    圖  7  超濾膜的制備工藝(a);膜的橫截面掃描電鏡圖像(b);不同膜的孔隙率和平均孔隙半徑(c);超濾膜的分離效率:(d)柴油/水;(e)石油醚/水;(f)正十六烷/水;(g)植物油/水[21]

    Figure  7.  Preparation process (a) of APTES-HNT/PVDF; cross-sectional SEM images (b) of membranes; porosities and mean pore radii of various membranes (c); oil rejections of membranes M0 and M2-3: (d) diesel oil/water (D/W); (e) petroleum ether/water (P/W); (f) n-hexadecane/water (H/W); (g) vegetable oil/water (V/W)[21]

    圖  8  HNTs裝載化學物質的示意圖[23]

    Figure  8.  Schematic illustration of halloysite loading with chemicals[23]

    圖  9  HNTs的選擇性修飾和雙功能化示意圖(a);二茂鐵從HNTs和ODP修飾的HNTs中的釋放曲線(b)和Higuchi時間平方根曲線(c);烷基三甲基溴化銨/ HNTs雜化材料的水接觸角(d);烷基三甲基溴化銨/HNTs雜化材料(e);硫酸銅和氯仿雙相體系攪拌10 h后照片(f)[95]

    Figure  9.  Schematic illustration (a) of selective modification and bifunctionalization of halloysite nanotubes; release profile (b) and Higuchi square root of time plots for release (c) of ferrocene from halloysite and halloysite-ODP; water contact angle on alkyl trimethylammonium bromide/ HNTs hybrid materials (d); illustration of the alkyl trimethylammonium bromide/HNTs hybrid materials (e); photo (f) of the biphasic system composed of a saturated aqueous phase (top) of copper sulfate and chloroform C16Br/HNTs dispersion (bottom) after 10 h of stirring[95]

    圖  10  布洛芬裝載、修改和藥物釋放過程示意圖(a);HNTs(b)、EHNTs@OS-4(c)和EHNTs@OS-1(d)的接觸角;不同組成的EHNTs@OS中布洛芬的釋放情況(e)[96]

    Figure  10.  Schematic representation (a) of IBU loading, modification, and drug-release process; wettability of the nanotubes (b), EHNTs@OS-4 (c), and EHNTs@OS-1 (d); release profiles (e) of IBU from the EHNTs@OS with different compositions[96]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Müller K, Bugnicourt E, Latorre M, et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 2017, 7(4): 74 doi: 10.3390/nano7040074
    [2] Paineau E, Krapf M E M, Amara M S, et al. A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes. Nat Commun, 2016, 7: 10271 doi: 10.1038/ncomms10271
    [3] Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment. Environ Sci Nano, 2016, 3(1): 28 doi: 10.1039/C5EN00149H
    [4] Clegg F, Breen C, Muranyi P, et al. Antimicrobial, starch based barrier coatings prepared using mixed silver/sodium exchanged bentonite. Appl Clay Sci, 2019, 179: 105144
    [5] Zhang J, Zhou C H, Petit S, et al. Hectorite: Synthesis, modification, assembly and applications. Appl Clay Sci, 2019, 177: 114 doi: 10.1016/j.clay.2019.05.001
    [6] Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci, 2018, 35: 42 doi: 10.1016/j.cocis.2018.01.002
    [7] Shamsi M H, Luqman M, Basarir F, et al. Plasma-modified halloysite nanocomposites: effect of plasma modification on the structure and dynamic mechanical properties of halloysite-polystyrene nanocomposites. Polym Int, 2010, 59(11): 1492 doi: 10.1002/pi.2946
    [8] Zhou S H, Chuan X Y. Synthesis of mesoporous carbon using halloyiste as template. J Inorg Mater, 2014, 29(6): 584

    周述慧, 傳秀云. 埃洛石為模板合成中孔炭. 無機材料學報, 2014, 29(6):584
    [9] Chen M Q, Chen Y, Shu Z, et al. Template-free synthesis of mesoporous silica with high specific surface area from natural halloysite and its application in methylene blue adsorption. J Inorg Mater, 2018, 33(12): 1365 doi: 10.15541/jim20180160

    陳孟秋, 陳云, 舒杼, 等. 埃洛石原料無模板法制備高比表面積介孔氧化硅及其在亞甲基藍吸附中的應用. 無機材料學報, 2018, 33(12):1365 doi: 10.15541/jim20180160
    [10] Feng K Y, Hung G Y, Liu J S, et al. Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J, 2018, 331: 744 doi: 10.1016/j.cej.2017.09.023
    [11] Cavallaro G, Lazzara G, Milioto S, et al. Halloysite nanotubes for cleaning, consolidation and protection. Chem Record, 2018, 18(7-8): 940 doi: 10.1002/tcr.201700099
    [12] Torres-Luna J A, Moreno S, Molina R, et al. Comparison of the catalytic performance of Ni, Mo, and Ni–Mo impregnated on acid halloysite nanotubes in the n-decane hydroconversion. Energy Fuels, 2019, 33(12): 12647 doi: 10.1021/acs.energyfuels.9b02211
    [13] Wu F, Pickett K, Panchal A, et al. Superhydrophobic polyurethane foam coated with polysiloxane-modified clay nanotubes for efficient and recyclable oil absorption. ACS Appl Mater Interfaces, 2019, 11(28): 25445 doi: 10.1021/acsami.9b08023
    [14] Li Y G, Quan X J, Hu C Y, et al. Effective catalytic reduction of 4-nitrophenol to 4-aminophenol over etched halloysite nanotubes@α-Ni(OH)2. ACS Appl Energy Mater, 2020, 3(5): 4756 doi: 10.1021/acsaem.0c00382
    [15] Li H L, Xu W N, Jia F F, et al. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int J Miner Metall Mater, 2020, 27(7): 857 doi: 10.1007/s12613-020-2078-0
    [16] Zheng Y, Wang L F, Zhong F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion. Ind Eng Chem Res, 2020, 59(13): 5636 doi: 10.1021/acs.iecr.9b06679
    [17] Lim K, Chow W S, Pung S Y. Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach. Int J Miner Metall Mater, 2019, 26(6): 787 doi: 10.1007/s12613-019-1781-1
    [18] Cavallaro G, Milioto S, Konnova S, et al. Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Appl Mater Interfaces, 2020, 12(21): 24348 doi: 10.1021/acsami.0c05252
    [19] Karami Z, Jazani O M, Navarchian A H, et al. Well-cured silicone/halloysite nanotubes nanocomposite coatings. Prog Org Coat, 2019, 129: 357 doi: 10.1016/j.porgcoat.2019.01.029
    [20] Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes: interfacial properties and applications in cultural heritage. Langmuir, 2020, 36(14): 3677 doi: 10.1021/acs.langmuir.0c00573
    [21] Zeng G Y, He Y, Zhan Y Q, et al. Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind Eng Chem Res, 2016, 55(6): 1760 doi: 10.1021/acs.iecr.5b04797
    [22] Gao X B, Tang F, Jin Z X. Pt-Cu bimetallic nanoparticles loaded in the lumen of halloysite nanotubes. Langmuir, 2019, 35(45): 14651 doi: 10.1021/acs.langmuir.9b02645
    [23] Lvov Y, Wang W C, Zhang L Q, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater, 2016, 28(6): 1227 doi: 10.1002/adma.201502341
    [24] Yah W O, Takahara A, Lvov Y M. Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc, 2012, 134(3): 1853 doi: 10.1021/ja210258y
    [25] Vergaro V, Abdullayev E, Lvov Y M, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 2010, 11(3): 820 doi: 10.1021/bm9014446
    [26] Hanif M, Jabbar F, Sharif S, et al. Halloysite nanotubes as a new drug-delivery system: a review. Clay Miner, 2016, 51(3): 469 doi: 10.1180/claymin.2016.051.3.03
    [27] Owoseni O, Zhang Y H, Su Y, et al et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization. Langmuir, 2015, 31(51): 13700 doi: 10.1021/acs.langmuir.5b03878
    [28] Du M L, Guo B C, Jia D M. Newly emerging applications of halloysite nanotubes: a review. Polym Int, 2010, 59(5): 574 doi: 10.1002/pi.2754
    [29] Massaro M, Colletti C G, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts. J Mater Chem A, 2017, 5(26): 13276 doi: 10.1039/C7TA02996A
    [30] Feng Y N, Zhou X P, Yang J H, et al. Encapsulation of ammonia borane in Pd/halloysite nanotubes for efficient thermal dehydrogenation. ACS Sustainable Chem Eng, 2020, 8(5): 2122 doi: 10.1021/acssuschemeng.9b04480
    [31] Massaro M, Cavallaro G, Colletti C G, et al. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B, 2018, 6(21): 3415 doi: 10.1039/C8TB00543E
    [32] Li B C, Zhang J P. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chem Commun, 2016, 52(13): 2744 doi: 10.1039/C5CC09951J
    [33] Zhu Q, Li B C, Li S B, et al. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids. J Colloid Interface Sci, 2019, 540: 228 doi: 10.1016/j.jcis.2019.01.024
    [34] Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials. J Mater Chem A, 2014, 2(39): 16319 doi: 10.1039/C4TA02071E
    [35] Fan H F, Guo Z G. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci, 2020, 8(6): 1502 doi: 10.1039/C9BM01729A
    [36] Ghasemlou M, Daver F, Ivanova E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem A, 2019, 7(28): 16643 doi: 10.1039/C9TA05185F
    [37] Jing X S, Guo Z G. Biomimetic super durable and stable surfaces with superhydrophobicity. J Mater Chem A, 2018, 6(35): 16731 doi: 10.1039/C8TA04994G
    [38] Chenab K K, Sohrabi B, Rahmanzadeh A. Superhydrophobicity: advanced biological and biomedical applications. Biomater Sci, 2019, 7(8): 3110 doi: 10.1039/C9BM00558G
    [39] Li L X, Li B C, Dong J, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J Mater Chem A, 2016, 4(36): 13677 doi: 10.1039/C6TA05441B
    [40] Li S H, Huang J Y, Chen Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A, 2017, 5(1): 31 doi: 10.1039/C6TA07984A
    [41] Dong S T. The Fabrication and Property Research of Superhydrophobic and Superamphiphobic Coatings Based on Spent Bleaching Earth Attapulgite [Dissertation]. Lanzhou: Lanzhou University of Technology, 2018

    董拴濤. 基于廢棄凹凸棒石超疏水/超雙疏涂層的制備及性能研究[學位論文]. 蘭州: 蘭州理工大學, 2018
    [42] Chen F F, Zhu Y J, Xiong Z C, et al. Hydroxyapatite nanowire-based all-weather flexible electrically conductive paper with superhydrophobic and flame-retardant properties. ACS Appl Mater Interfaces, 2017, 9(45): 39534 doi: 10.1021/acsami.7b09484
    [43] Chu F Q, Wu X M, Wang L L. Meltwater evolution during defrosting on superhydrophobic surfaces. ACS Appl Mater Interfaces, 2018, 10(1): 1415 doi: 10.1021/acsami.7b16087
    [44] Han J T, Kim B K, Woo J S, et al. Bioinspired multifunctional superhydrophobic surfaces with carbon-nanotube-based conducting pastes by facile and scalable printing. ACS Appl Mater Interfaces, 2017, 9(8): 7780 doi: 10.1021/acsami.6b15292
    [45] Liu Q, Chen D X, Kang Z X. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Interfaces, 2015, 7(3): 1859 doi: 10.1021/am507586u
    [46] Murphy K R, McClintic W T, Lester K C, et al. Dynamic defrosting on scalable superhydrophobic surfaces. ACS Appl Mater Interfaces, 2017, 9(28): 24308 doi: 10.1021/acsami.7b05651
    [47] Wang H P, He M J, Liu H, et al. One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability, thermal stability, and anti-icing function. ACS Appl Mater Interfaces, 2019, 11(28): 25586 doi: 10.1021/acsami.9b06865
    [48] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. Nanoscale, 2017, 9(10): 3338 doi: 10.1039/C7NR00096K
    [49] Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci, 2011, 56(1): 1 doi: 10.1016/j.pmatsci.2010.04.003
    [50] Gao X F, Jiang L. Water-repellent legs of water striders. Nature, 2004, 432(7013): 36 doi: 10.1038/432036a
    [51] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007, 3(2): 178 doi: 10.1039/B612667G
    [52] Gou X L, Guo Z G. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Adv Colloid Interface Sci, 2019, 269: 87 doi: 10.1016/j.cis.2019.04.007
    [53] Jiang L, Tang Z G, Clinton R M, et al. Two-step process to create "roll-off" superamphiphobic paper surfaces. ACS Appl Mater Interfaces, 2017, 9(10): 9195 doi: 10.1021/acsami.7b00829
    [54] Liu T L, Kim C J. Turning a surface superrepellent even to completely wetting liquids. Science, 2014, 346(6213): 1096 doi: 10.1126/science.1254787
    [55] Zhou H, Wang H X, Niu H T, et al. A waterborne coating system for preparing robust, self-healing, superamphiphobic surfaces. Adv Funct Mater, 2017, 27(14): 1604261 doi: 10.1002/adfm.201604261
    [56] Wang Y Y, Xue J, Wang Q J, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl Mater Interfaces, 2013, 5(8): 3370 doi: 10.1021/am400429q
    [57] Zhai G K, Li S L, Chen S S, et al. Anti-icing performance of superhydrophobic coating prepared by modified fluorinated silicone. Chin J Eng, 2018, 40(7): 864

    翟廣坤, 李曙林, 陳素素, 等. 氟化改性硅樹脂制備的超疏水涂層防覆冰性能. 工程科學學報, 2018, 40(7):864
    [58] Geng Z, He J H. An effective method to significantly enhance the robustness and adhesion-to-substrate of high transmittance superamphiphobic silica thin films. J Mater Chem A, 2014, 2(39): 16601 doi: 10.1039/C4TA03533J
    [59] Yu S, Guo Z G, Liu W M. Biomimetic transparent and superhydrophobic coatings: from nature and beyond nature. Chem Commun, 2015, 51(10): 1775 doi: 10.1039/C4CC06868H
    [60] Zhou Y Y, Ma Y B, Sun Y Y, et al. Robust superhydrophobic surface based on multiple hybrid coatings for application in corrosion protection. ACS Appl Mater Interfaces, 2019, 11(6): 6512 doi: 10.1021/acsami.8b19663
    [61] Wen M, Peng C, Yao M, et al. Efficient gas adsorption using superamphiphobic porous monoliths as the under-liquid gas-conductive circuits. ACS Appl Mater Interfaces, 2019, 11(27): 24795 doi: 10.1021/acsami.9b07510
    [62] Wen M, Zhong J, Zhao S J, et al. Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. J Mater Chem A, 2017, 5(18): 8352 doi: 10.1039/C7TA01999H
    [63] Guo X J, Xue C H, Jia S T, et al. Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination. Chem Eng J, 2017, 320: 330 doi: 10.1016/j.cej.2017.03.058
    [64] Liu H, Huang J Y, Li F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24(2): 1129 doi: 10.1007/s10570-016-1177-6
    [65] Yin K, Dong X R, Zhang F, et al. Superamphiphobic miniature boat fabricated by laser micromachining. Appl Phys Lett, 2017, 110(12): 121909 doi: 10.1063/1.4979036
    [66] Wen R F, Xu S S, Zhao D L, et al. Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation. ACS Appl Mater Interfaces, 2017, 9(51): 44911 doi: 10.1021/acsami.7b14960
    [67] Nagappan S, Ha C S. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. J Mater Chem A, 2015, 3(7): 3224 doi: 10.1039/C4TA05078A
    [68] Sahoo B N, Kandasubramanian B. Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv, 2014, 4(42): 22053 doi: 10.1039/c4ra00506f
    [69] Si Y F, Guo Z G. Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale, 2015, 7(14): 5922 doi: 10.1039/C4NR07554D
    [70] Chu Z L, Seeger S. Superamphiphobic surfaces. Chem Soc Rev, 2014, 43(8): 2784 doi: 10.1039/C3CS60415B
    [71] Sun Y H, Guo Z G. A scalable, self-healing and hot liquid repelling superamphiphobic spray coating with remarkable mechanochemical robustness for real-life applications. Nanoscale, 2019, 11(29): 13853 doi: 10.1039/C9NR02893E
    [72] Tie L, Li J, Guo Z G, et al. Controllable preparation of multiple superantiwetting surfaces: from dual to quadruple superlyophobicity. Chem Eng J, 2019, 369: 463 doi: 10.1016/j.cej.2019.03.110
    [73] Wang H J, Zhang Z H, Wang Z K, et al. Multistimuli-responsive microstructured superamphiphobic surfaces with large-range, reversible switchable wettability for oil. ACS Appl Mater Interfaces, 2019, 11(31): 28478 doi: 10.1021/acsami.9b07941
    [74] Zhang J P, Yu B, Wei Q Y, et al. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation. J Colloid Interface Sci, 2019, 554: 250 doi: 10.1016/j.jcis.2019.06.106
    [75] Arcudi F, Cavallaro G, Lazzara G, et al. Selective functionalization of halloysite cavity by click reaction: structured filler for enhancing mechanical properties of bionanocomposite films. J Phys Chem C, 2014, 118(27): 15095 doi: 10.1021/jp504388e
    [76] Wu H, Watanabe H, Ma W, et al. Robust liquid marbles stabilized with surface-modified halloysite nanotubes. Langmuir, 2013, 29(48): 14971 doi: 10.1021/la4041858
    [77] Liu M X, Jia Z X, Liu F, et al. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci, 2010, 350(1): 186 doi: 10.1016/j.jcis.2010.06.047
    [78] Jin Z L, Zhang Y Q, Wei S, et al. Molding of molecular sieve residues and their application in cleaning oily wastewater. Trans Tianjin Univ, 2019, 25(6): 631 doi: 10.1007/s12209-019-00201-2
    [79] Dong L H, Zhang H J, Zhang J, et al. Carbon nanotube modified sepiolite porous ceramics for high-efficient oil/water separation. J Inorg Mater, 2020, 35(6): 689

    董龍浩, 張海軍, 張俊, 等. 碳納米管改性海泡石多孔陶瓷及其高效油水分離性能研究. 無機材料學報, 2020, 35(6):689
    [80] Zhang Y, Zhang Q, Zhang R Y, et al. Preparation of superhydrophobic composites sponge and its application in oil-water separation. J Inorg Mater, 2020, 35(4): 475

    張穎, 張騫, 張瑞陽, 等. 超疏水復合海綿材料的制備及在油水分離的應用. 無機材料學報, 2020, 35(4):475
    [81] Chen C L, Weng D, Mahmood A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation. ACS Appl Mater Interfaces, 2019, 11(11): 11006 doi: 10.1021/acsami.9b01293
    [82] Qu H M, Zhang J, Ma Y X, et al. Phase-selective gelators based on p-alkoxybenzoyl for oil spill recovery and dye removal. Trans Tianjin Univ, 2019, 25(6): 586 doi: 10.1007/s12209-019-00204-z
    [83] Kota A K, Kwon G, Choi W, et al. Hygro-responsive membranes for effective oil-water separation. Nat Commun, 2012, 3: 1025 doi: 10.1038/ncomms2027
    [84] Xue Z X, Wang S T, Lin L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater, 2011, 23(37): 4270 doi: 10.1002/adma.201102616
    [85] Gupta R K, Dunderdale G J, England M W, et al. Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A, 2017, 5(31): 16025 doi: 10.1039/C7TA02070H
    [86] Zhao X J, Luo Y Y, Tan P X, et al. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation. Int J Biol Macromol, 2019, 132: 406 doi: 10.1016/j.ijbiomac.2019.03.219
    [87] Guo D Y, Chen J H, Hou K, et al. A facile preparation of superhydrophobic halloysite-based meshes for efficient oil–water separation. Appl Clay Sci, 2018, 156: 195 doi: 10.1016/j.clay.2018.01.034
    [88] Ma Q L, Cheng H F, Fane A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation. Small, 2016, 12(16): 2186 doi: 10.1002/smll.201503685
    [89] Aguzzi C, Cerezo P, Viseras C, et al. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci, 2007, 36(1-3): 22 doi: 10.1016/j.clay.2006.06.015
    [90] Kumar-Krishnan S, Hernandez-Rangel A, Pal U, et al. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B, 2016, 4(15): 2553 doi: 10.1039/C6TB00051G
    [91] Goran J M, Mantilla S M, Stevenson K J. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes. Anal Chem, 2013, 85(3): 1571 doi: 10.1021/ac3028036
    [92] Lun H L, Ouyang J, Yang H M. Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv, 2014, 4(83): 44197 doi: 10.1039/C4RA09006C
    [93] Lisuzzo L, Cavallaro G, Parisi F, et al. Colloidal stability of halloysite clay nanotubes. Ceram Int, 2019, 45(2): 2858 doi: 10.1016/j.ceramint.2018.07.289
    [94] Riela S, Massaro M, Colletti C G, et al. Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity. Int J Pharm, 2014, 475(1-2): 613 doi: 10.1016/j.ijpharm.2014.09.019
    [95] Cavallaro G, Lazzara G, Milioto S, et al. Hydrophobically modified halloysite nanotubes as reverse micelles for water-in-oil emulsion. Langmuir, 2015, 31(27): 7472 doi: 10.1021/acs.langmuir.5b01181
    [96] Li H, Zhu X H, Zhou H, et al. Functionalization of halloysite nanotubes by enlargement and hydrophobicity for sustained release of analgesic. Colloids Surf A, 2015, 487: 154 doi: 10.1016/j.colsurfa.2015.09.062
  • 加載中
圖(10)
計量
  • 文章訪問數:  1462
  • HTML全文瀏覽量:  1228
  • PDF下載量:  163
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-24
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回