<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

張拉作用下巖石破裂的聲發射特性及P波初動極性

劉希靈 劉清林 杜坤 李夕兵 謝秦

劉希靈, 劉清林, 杜坤, 李夕兵, 謝秦. 張拉作用下巖石破裂的聲發射特性及P波初動極性[J]. 工程科學學報, 2022, 44(8): 1315-1323. doi: 10.13374/j.issn2095-9389.2021.01.16.005
引用本文: 劉希靈, 劉清林, 杜坤, 李夕兵, 謝秦. 張拉作用下巖石破裂的聲發射特性及P波初動極性[J]. 工程科學學報, 2022, 44(8): 1315-1323. doi: 10.13374/j.issn2095-9389.2021.01.16.005
LIU Xi-ling, LIU Qing-lin, DU Kun, LI Xi-bing, XIE Qin. Acoustic emission features and P-wave first-motion polarity of tensile fractures in the rock[J]. Chinese Journal of Engineering, 2022, 44(8): 1315-1323. doi: 10.13374/j.issn2095-9389.2021.01.16.005
Citation: LIU Xi-ling, LIU Qing-lin, DU Kun, LI Xi-bing, XIE Qin. Acoustic emission features and P-wave first-motion polarity of tensile fractures in the rock[J]. Chinese Journal of Engineering, 2022, 44(8): 1315-1323. doi: 10.13374/j.issn2095-9389.2021.01.16.005

張拉作用下巖石破裂的聲發射特性及P波初動極性

doi: 10.13374/j.issn2095-9389.2021.01.16.005
基金項目: 國家自然科學基金資助項目(41630642, 51774326)
詳細信息
    通訊作者:

    E-mail: lxlenglish@163.com

  • 中圖分類號: TD315

Acoustic emission features and P-wave first-motion polarity of tensile fractures in the rock

More Information
  • 摘要: 為深入探討巖石在張拉作用下破裂的聲發射特性,設計了一種膨脹劑擴張破裂的聲發射實驗,詳細分析了花崗巖、大理巖和紅砂巖聲發射信號的特征參數及P波初動極性。實驗結果表明:聲發射信號的累積計數和能量在三種巖石試樣宏觀開裂時均呈指數增長;花崗巖、大理巖和紅紗巖試樣聲發射信號的中心頻率分別主要集中在100 ~ 300 kHz、200 ~ 400 kHz、200 ~ 500 kHz;花崗巖低頻率事件占比最多,大理巖高頻率事件占比較多,而紅砂巖高頻事件占比最多, 三種巖樣膨脹力荷載后期低中心頻率聲發射信號增多,說明大尺度破裂增加;三種巖樣聲發射信號的RA主要集中在0~1.9之間,大理巖和紅砂巖AF值主要集中在50 ~ 100 kHz之間,花崗巖AF值主要集中在200 ~ 250 kHz之間,RA?AF的分布特性表明,實驗中巖樣主要以張拉破壞為主;通過P波初動極性分析法,獲得各巖樣聲發射信號的初動極性,結果顯示,花崗巖、大理巖和紅砂巖分別有77.82%、79.5%和87.42%的T-型破裂源,花崗巖、大理巖幾乎不產生S-型破裂源,而紅砂巖因為天然節理裂隙較多,有9.93%的S-型破裂源。RA?AF分布分析和p波初動極性分析都是統計分析法,可以定性描述巖石破裂類型。

     

  • 圖  1  三種巖石試樣圖. (a)花崗巖;(b)大理巖;(c)紅砂巖

    Figure  1.  Three rock samples: (a) granite;(b) marble; (c) red sandstone

    圖  2  膨脹劑擴張破裂的聲發射實驗系統示意圖

    Figure  2.  Schematic diagram of the rock AE experimental system for expansion fracture

    圖  3  聲發射特征參數和應變隨時間變化曲線. (a)花崗巖;(b) 大理巖;(c) 紅砂巖

    Figure  3.  Variation curve of AE parameters and strain over time: (a) granite; (b) marble; (c) red sandstone

    圖  4  三種巖石中心頻率的時域分布散點圖. (a) 花崗巖;(b) 大理巖;(c) 紅砂巖

    Figure  4.  Scatter diagram of the centroid frequency in the time domain of the three rock samples: (a) granite; (b) marble; (c) red sandstone

    圖  5  三種巖石不同中心頻率頻段聲發射事件占比分布圖. (a) 花崗巖;(b) 大理巖;(c) 紅砂巖

    Figure  5.  Distribution of AE events in different centroid frequency intervals of the three stones: (a) granite; (b) marble; (c) red sandstone

    圖  6  三種巖石微觀結構圖. (a)花崗巖;(b)大理巖;(c)紅砂巖

    Figure  6.  Microstructure of rocks in the transparent refractive index experiment: (a) granite; (b) marble; (c) red sandstone

    圖  7  三種巖樣RA?AF散點圖和密度云圖. (a),(c),(e)分別為花崗巖、大理巖、紅砂巖RA?AF散點圖;(b),(d),(f)分別為花崗巖、大理巖、紅砂巖RA-AF密度云圖

    Figure  7.  RA?AF distribution and density cloud diagram of the three kinds rock samples: (a), (c), (e) is RA?AF scatter diagram of granite, marble and red sandstone respectively; (b), (d), (f) is density cloud diagram of granite, marble and red sandstone respectively

    圖  8  三種巖石實驗中T-型、C-型和S-型破裂源聲發射事件數所占比率. (a)花崗巖;(b)大理巖;(c)紅砂巖

    Figure  8.  Proportion of T-type, C-type, and S-type AE events in experiments of the three rock samples: (a) granite; (b) marble; (c) red sandstone

    圖  9  (a) 膨脹劑作用下巖石試樣受力示意圖;(b) T-type破裂示意圖;(c) S-type破裂示意圖;(d) C-type破裂示意圖

    Figure  9.  (a) Schematic diagram of the force in the rock sample under the action of the expansion agent; (b) T-type rupture; (c) S-type rupture; (d) C-type rupture

    表  1  聲發射采集系統參數設置

    Table  1.   AE instrument parameter setups

    Thres
    hold /
    dB
    Sampl
    ing rate /
    MHz
    Pre-tri
    gger /
    μs
    Peak defi
    nition time
    (PDT) /μs
    Hit defi
    nition time
    (HDT) /μs
    Hit loc
    king time
    (HLT) /μs
    40525650200300
    下載: 導出CSV

    表  2  三種巖石宏觀破裂階段累積計數線性擬合一次項系數

    Table  2.   Linear fitting first-order coefficients of cumulative counts during macroscopic fracture stages of the three rock samples

    GraniteMarbleRed sandstone
    149.4510479720254
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Atkinson B K. Fracture Mechanics of Rock. Translated by Yin X C, Xiu J G. Beijing: Seismological Press, 1992

    阿特金森 B K. 巖石斷裂力學. 尹祥礎, 修濟剛, 譯. 北京: 地震出版社, 1992
    [2] Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismol Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076
    [3] Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003
    [4] Hu X C, Su G S, Chen G Y, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics. Rock Mech Rock Eng, 2019, 52(3): 783 doi: 10.1007/s00603-018-1613-z
    [5] Wang Y, He M C, Liu D Q, et al. Rockburst in sandstone containing elliptic holes with varying axial ratios. Adv Mater Sci Eng, 2019, 2019: 1
    [6] Tao M, Ma A, Cao W Z, et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading. Int J Rock Mech Min Sci, 2017, 99: 1 doi: 10.1016/j.ijrmms.2017.09.003
    [7] Zhou Z L, Cai X, Li X B, et al. Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications. Rock Mech Rock Eng, 2020, 53(3): 1305 doi: 10.1007/s00603-019-01980-9
    [8] Gong F Q, Luo S, Li X B, et al. Rules of linear energy storage and energy dissipation in red sandstone during tensioning. Chin J Rock Mech Eng, 2018, 37(2): 352

    宮鳳強, 羅松, 李夕兵, 等. 紅砂巖張拉破壞過程中的線性儲能和耗能規律. 巖石力學與工程學報, 2018, 37(2):352
    [9] Luo S, Gong F Q. Linear energy storage and dissipation laws during rock fracture under three-point flexural loading. Eng Fract Mech, 2020, 234: 107102 doi: 10.1016/j.engfracmech.2020.107102
    [10] Almerich-Chulia A, Fenollosa E, Cabrera I. GFRP bar: Determining tensile strength with bending test. Adv Mater Res, 2015, 1083: 90 doi: 10.4028/www.scientific.net/AMR.1083.90
    [11] Mogi K. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd Paper). Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 831
    [12] Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am, 1968, 58(1): 399 doi: 10.1785/BSSA0580010399
    [13] Scholz C H. On the stress dependence of the earthquake b value. Geophys Res Lett, 2015, 42(5): 1399 doi: 10.1002/2014GL062863
    [14] Vorobieva I, Shebalin P, Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system. Geophys Res Lett, 2016, 43(13): 6869 doi: 10.1002/2016GL069636
    [15] Liu X L, Han M S, He W, et al. A new b value estimation method in rock acoustic emission testing. J Geophys Res:Solid Earth, 2020, 125(12): e2020JB019658
    [16] Aggelis D G, Mpalaskas A C, Matikas T E. Acoustic signature of different fracture modes in marble and cementitious materials under flexural load. Mech Res Commun, 2013, 47: 39 doi: 10.1016/j.mechrescom.2012.11.007
    [17] Nejati H R, Nazerigivi A, Sayadi A R. Physical and mechanical phenomena associated with rock failure in Brazilian Disc Specimens. Int J of Geo and Env Eng, 2018, 12(1): 35
    [18] Liu X L, Liu Z, Li X B, et al. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load. Chin J Eng, 2019, 41(11): 1422

    劉希靈, 劉周, 李夕兵, 等. 劈裂荷載下的巖石聲發射及微觀破裂特性. 工程科學學報, 2019, 41(11):1422
    [19] Xie Q, Li S X, Liu X L, et al. Effect of loading rate on fracture behaviors of shale under mode I loading. J Central South Univ, 2020, 27(10): 3118 doi: 10.1007/s11771-020-4533-5
    [20] Du K, Li X F, Tao M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int J Rock Mech Min Sci, 2020, 133: 104411 doi: 10.1016/j.ijrmms.2020.104411
    [21] Liu X L, Li X B, Hong L, et al. Acoustic emission characteristics of rock under impact loading. J Central South Univ, 2015, 22(9): 3571 doi: 10.1007/s11771-015-2897-8
    [22] Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics. Int J Rock Mech Min Sci, 2020, 133: 104420 doi: 10.1016/j.ijrmms.2020.104420
    [23] Aki K, Richards P G. Quantitative Seismology. 2nd Ed. Herndon: University Science Books, 2002
    [24] Wang E Y, He X Q, Liu Z T, et al. Study on frequency spectrum characteristics of acoustic emission in coal or rock deformation and fracture. J China Coal Soc, 2004, 29(3): 289 doi: 10.3321/j.issn:0253-9993.2004.03.008

    王恩元, 何學秋, 劉貞堂, 等. 煤體破裂聲發射的頻譜特征研究. 煤炭學報, 2004, 29(3):289 doi: 10.3321/j.issn:0253-9993.2004.03.008
    [25] Ji H G, Wang H W, Cao S Z, et al. Experimental research on frequency characteristics of acoustic emission signals under uniaxial compression of granite. Chin J Rock Mech Eng, 2012, 31(Suppl 1): 2900

    紀洪廣, 王宏偉, 曹善忠, 等. 花崗巖單軸受壓條件下聲發射信號頻率特征試驗研究. 巖石力學與工程學報, 2012, 31(增刊1): 2900
    [26] Gong Y X, He M C, Wang Z H, et al. Research on time-frequency analysis algorithm and instantaneous frequency precursors for acoustic emission data from rock failure experiment. Chin J Rock Mech Eng, 2013, 32(4): 787 doi: 10.3969/j.issn.1000-6915.2013.04.018

    宮宇新, 何滿潮, 汪政紅, 等. 巖石破壞聲發射時頻分析算法與瞬時頻率前兆研究. 巖石力學與工程學報, 2013, 32(4):787 doi: 10.3969/j.issn.1000-6915.2013.04.018
    [27] Zhang L M, Ma S Q, Ren M Y, et al. Acoustic emission frequency and B-value characteristics of rock failure process under different confining pressures. Chin J Rock Mech Eng, 2015, 34(10): 2057

    張黎明, 馬紹瓊, 任明遠, 等. 不同圍壓下巖石破壞過程的聲發射頻率及b值特征. 巖石力學與工程學報, 2015, 34(10):2057
    [28] Liu X L, Cui J H, Li X B, et al. Study on attenuation characteristics of elastic wave in different types of rocks. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3223

    劉希靈, 崔佳慧, 李夕兵, 等. 不同類型巖石中彈性波衰減特性研究. 巖石力學與工程學報, 2018, 37(增刊1): 3223
    [29] Hafez A G, Khan T A, Kohda T. Earthquake onset detection using spectro-ratio on multi-threshold time-frequency sub-band. Digit Signal Process, 2009, 19(1): 118 doi: 10.1016/j.dsp.2008.08.003
    [30] Hafez A G, Khan M T A, Kohda T. Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digit Signal Process, 2010, 20(3): 715 doi: 10.1016/j.dsp.2009.10.002
    [31] Saragiotis C D, Hadjileontiadis L J, Panas S M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Trans Geosci Remote Sens, 2002, 40(6): 1395 doi: 10.1109/TGRS.2002.800438
    [32] Maeda N. A method for reading and checking phase time in auto-processing system of seismic wave data. Zisin (J Seismol Soc Jpn 2nd Ser), 1985, 38(3): 365
    [33] Shang X Y, Li X B, Morales-Esteban A, et al. An improved P-phase arrival picking method S/L-K-A with an application to the yongshaba mine in China. Pure Appl Geophys, 2018, 175(6): 2121 doi: 10.1007/s00024-018-1789-x
    [34] Zang A, Christian Wagner F, Stanchits S, et al. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int, 1998, 135(3): 1113 doi: 10.1046/j.1365-246X.1998.00706.x
    [35] Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: The effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011
    [36] Walter W R, Brune J N. Spectra of seismic radiation from a tensile crack. J Geophys Res:Solid Earth, 1993, 98(B3): 4449 doi: 10.1029/92JB02414
    [37] Madariaga R. Dynamics of an expanding circular fault. Bull Seismol Soc Am, 1976, 66(3): 639 doi: 10.1785/BSSA0660030639
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  619
  • HTML全文瀏覽量:  278
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-16
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回