Acoustic emission features and P-wave first-motion polarity of tensile fractures in the rock
-
摘要: 為深入探討巖石在張拉作用下破裂的聲發射特性,設計了一種膨脹劑擴張破裂的聲發射實驗,詳細分析了花崗巖、大理巖和紅砂巖聲發射信號的特征參數及P波初動極性。實驗結果表明:聲發射信號的累積計數和能量在三種巖石試樣宏觀開裂時均呈指數增長;花崗巖、大理巖和紅紗巖試樣聲發射信號的中心頻率分別主要集中在100 ~ 300 kHz、200 ~ 400 kHz、200 ~ 500 kHz;花崗巖低頻率事件占比最多,大理巖高頻率事件占比較多,而紅砂巖高頻事件占比最多, 三種巖樣膨脹力荷載后期低中心頻率聲發射信號增多,說明大尺度破裂增加;三種巖樣聲發射信號的RA主要集中在0~1.9之間,大理巖和紅砂巖AF值主要集中在50 ~ 100 kHz之間,花崗巖AF值主要集中在200 ~ 250 kHz之間,RA?AF的分布特性表明,實驗中巖樣主要以張拉破壞為主;通過P波初動極性分析法,獲得各巖樣聲發射信號的初動極性,結果顯示,花崗巖、大理巖和紅砂巖分別有77.82%、79.5%和87.42%的T-型破裂源,花崗巖、大理巖幾乎不產生S-型破裂源,而紅砂巖因為天然節理裂隙較多,有9.93%的S-型破裂源。RA?AF分布分析和p波初動極性分析都是統計分析法,可以定性描述巖石破裂類型。Abstract: To investigate the acoustic emission (AE) characteristics of tensile fracture in the rock, an AE experiment of granite, marble, and red sandstone using an expanding agent for fracture generation was designed. Characteristic parameters of AE signals and the P-wave first-motion polarity were analyzed in detail. Results show that the cumulative count and energy of the AE signal increase exponentially when a macroscopic failure occurs in all three kinds of rock samples. The centroid frequency of AE signals of granite, marble, and red sandstone samples mainly concentrates in the range of 100–300 kHz, 200–400 kHz, and 200–500 kHz, respectively, and the proportion of high centroid frequency events in the red sandstone test is the highest, followed by marble and granite. As the AE signal’s centroid frequency in all three kinds of rocks changed with the time of expander action, more AE signals with a low centroid frequency appeared in the late loading period, indicating the increase of large-scale fracture in the late loading period. Meanwhile, RA values of AE signals of the three rock samples mainly concentrate between 0 and 1.9. AF values of marble and red sandstone mainly concentrate between 50 kHz and 100 kHz, and AF values of granite mainly concentrate between 200 kHz and 250 kHz. Distribution characteristics of the RA?AF indicate that the tensile failure dominates the cracking process in such an experiment. The P-wave first-motion polarity analysis method was used to obtain the first-motion polarity of AE signals of each rock sample. Results showed that there are 77.82%, 79.5%, and 87.42% T-type crackles in granite, marble, and red sandstone, respectively. Moreover, granite and marble exhibit almost no S-type crackle, while red sandstone samples have 9.93% S-type crackles. Both RA?AF distribution and P-wave first-motion polarity analyses are statistical analysis methods, which can qualitatively analyze the type of rock fracture.
-
圖 7 三種巖樣RA?AF散點圖和密度云圖. (a),(c),(e)分別為花崗巖、大理巖、紅砂巖RA?AF散點圖;(b),(d),(f)分別為花崗巖、大理巖、紅砂巖RA-AF密度云圖
Figure 7. RA?AF distribution and density cloud diagram of the three kinds rock samples: (a), (c), (e) is RA?AF scatter diagram of granite, marble and red sandstone respectively; (b), (d), (f) is density cloud diagram of granite, marble and red sandstone respectively
表 1 聲發射采集系統參數設置
Table 1. AE instrument parameter setups
Thres
hold /
dBSampl
ing rate /
MHzPre-tri
gger /
μsPeak defi
nition time
(PDT) /μsHit defi
nition time
(HDT) /μsHit loc
king time
(HLT) /μs40 5 256 50 200 300 表 2 三種巖石宏觀破裂階段累積計數線性擬合一次項系數
Table 2. Linear fitting first-order coefficients of cumulative counts during macroscopic fracture stages of the three rock samples
Granite Marble Red sandstone 149.45 104797 20254 www.77susu.com -
參考文獻
[1] Atkinson B K. Fracture Mechanics of Rock. Translated by Yin X C, Xiu J G. Beijing: Seismological Press, 1992阿特金森 B K. 巖石斷裂力學. 尹祥礎, 修濟剛, 譯. 北京: 地震出版社, 1992 [2] Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismol Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076 [3] Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003 [4] Hu X C, Su G S, Chen G Y, et al. Experiment on rockburst process of borehole and its acoustic emission characteristics. Rock Mech Rock Eng, 2019, 52(3): 783 doi: 10.1007/s00603-018-1613-z [5] Wang Y, He M C, Liu D Q, et al. Rockburst in sandstone containing elliptic holes with varying axial ratios. Adv Mater Sci Eng, 2019, 2019: 1 [6] Tao M, Ma A, Cao W Z, et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading. Int J Rock Mech Min Sci, 2017, 99: 1 doi: 10.1016/j.ijrmms.2017.09.003 [7] Zhou Z L, Cai X, Li X B, et al. Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications. Rock Mech Rock Eng, 2020, 53(3): 1305 doi: 10.1007/s00603-019-01980-9 [8] Gong F Q, Luo S, Li X B, et al. Rules of linear energy storage and energy dissipation in red sandstone during tensioning. Chin J Rock Mech Eng, 2018, 37(2): 352宮鳳強, 羅松, 李夕兵, 等. 紅砂巖張拉破壞過程中的線性儲能和耗能規律. 巖石力學與工程學報, 2018, 37(2):352 [9] Luo S, Gong F Q. Linear energy storage and dissipation laws during rock fracture under three-point flexural loading. Eng Fract Mech, 2020, 234: 107102 doi: 10.1016/j.engfracmech.2020.107102 [10] Almerich-Chulia A, Fenollosa E, Cabrera I. GFRP bar: Determining tensile strength with bending test. Adv Mater Res, 2015, 1083: 90 doi: 10.4028/www.scientific.net/AMR.1083.90 [11] Mogi K. Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd Paper). Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 831 [12] Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am, 1968, 58(1): 399 doi: 10.1785/BSSA0580010399 [13] Scholz C H. On the stress dependence of the earthquake b value. Geophys Res Lett, 2015, 42(5): 1399 doi: 10.1002/2014GL062863 [14] Vorobieva I, Shebalin P, Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system. Geophys Res Lett, 2016, 43(13): 6869 doi: 10.1002/2016GL069636 [15] Liu X L, Han M S, He W, et al. A new b value estimation method in rock acoustic emission testing. J Geophys Res:Solid Earth, 2020, 125(12): e2020JB019658 [16] Aggelis D G, Mpalaskas A C, Matikas T E. Acoustic signature of different fracture modes in marble and cementitious materials under flexural load. Mech Res Commun, 2013, 47: 39 doi: 10.1016/j.mechrescom.2012.11.007 [17] Nejati H R, Nazerigivi A, Sayadi A R. Physical and mechanical phenomena associated with rock failure in Brazilian Disc Specimens. Int J of Geo and Env Eng, 2018, 12(1): 35 [18] Liu X L, Liu Z, Li X B, et al. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load. Chin J Eng, 2019, 41(11): 1422劉希靈, 劉周, 李夕兵, 等. 劈裂荷載下的巖石聲發射及微觀破裂特性. 工程科學學報, 2019, 41(11):1422 [19] Xie Q, Li S X, Liu X L, et al. Effect of loading rate on fracture behaviors of shale under mode I loading. J Central South Univ, 2020, 27(10): 3118 doi: 10.1007/s11771-020-4533-5 [20] Du K, Li X F, Tao M, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int J Rock Mech Min Sci, 2020, 133: 104411 doi: 10.1016/j.ijrmms.2020.104411 [21] Liu X L, Li X B, Hong L, et al. Acoustic emission characteristics of rock under impact loading. J Central South Univ, 2015, 22(9): 3571 doi: 10.1007/s11771-015-2897-8 [22] Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics. Int J Rock Mech Min Sci, 2020, 133: 104420 doi: 10.1016/j.ijrmms.2020.104420 [23] Aki K, Richards P G. Quantitative Seismology. 2nd Ed. Herndon: University Science Books, 2002 [24] Wang E Y, He X Q, Liu Z T, et al. Study on frequency spectrum characteristics of acoustic emission in coal or rock deformation and fracture. J China Coal Soc, 2004, 29(3): 289 doi: 10.3321/j.issn:0253-9993.2004.03.008王恩元, 何學秋, 劉貞堂, 等. 煤體破裂聲發射的頻譜特征研究. 煤炭學報, 2004, 29(3):289 doi: 10.3321/j.issn:0253-9993.2004.03.008 [25] Ji H G, Wang H W, Cao S Z, et al. Experimental research on frequency characteristics of acoustic emission signals under uniaxial compression of granite. Chin J Rock Mech Eng, 2012, 31(Suppl 1): 2900紀洪廣, 王宏偉, 曹善忠, 等. 花崗巖單軸受壓條件下聲發射信號頻率特征試驗研究. 巖石力學與工程學報, 2012, 31(增刊1): 2900 [26] Gong Y X, He M C, Wang Z H, et al. Research on time-frequency analysis algorithm and instantaneous frequency precursors for acoustic emission data from rock failure experiment. Chin J Rock Mech Eng, 2013, 32(4): 787 doi: 10.3969/j.issn.1000-6915.2013.04.018宮宇新, 何滿潮, 汪政紅, 等. 巖石破壞聲發射時頻分析算法與瞬時頻率前兆研究. 巖石力學與工程學報, 2013, 32(4):787 doi: 10.3969/j.issn.1000-6915.2013.04.018 [27] Zhang L M, Ma S Q, Ren M Y, et al. Acoustic emission frequency and B-value characteristics of rock failure process under different confining pressures. Chin J Rock Mech Eng, 2015, 34(10): 2057張黎明, 馬紹瓊, 任明遠, 等. 不同圍壓下巖石破壞過程的聲發射頻率及b值特征. 巖石力學與工程學報, 2015, 34(10):2057 [28] Liu X L, Cui J H, Li X B, et al. Study on attenuation characteristics of elastic wave in different types of rocks. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3223劉希靈, 崔佳慧, 李夕兵, 等. 不同類型巖石中彈性波衰減特性研究. 巖石力學與工程學報, 2018, 37(增刊1): 3223 [29] Hafez A G, Khan T A, Kohda T. Earthquake onset detection using spectro-ratio on multi-threshold time-frequency sub-band. Digit Signal Process, 2009, 19(1): 118 doi: 10.1016/j.dsp.2008.08.003 [30] Hafez A G, Khan M T A, Kohda T. Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digit Signal Process, 2010, 20(3): 715 doi: 10.1016/j.dsp.2009.10.002 [31] Saragiotis C D, Hadjileontiadis L J, Panas S M. PAI-S/K: A robust automatic seismic P phase arrival identification scheme. IEEE Trans Geosci Remote Sens, 2002, 40(6): 1395 doi: 10.1109/TGRS.2002.800438 [32] Maeda N. A method for reading and checking phase time in auto-processing system of seismic wave data. Zisin (J Seismol Soc Jpn 2nd Ser) , 1985, 38(3): 365 [33] Shang X Y, Li X B, Morales-Esteban A, et al. An improved P-phase arrival picking method S/L-K-A with an application to the yongshaba mine in China. Pure Appl Geophys, 2018, 175(6): 2121 doi: 10.1007/s00024-018-1789-x [34] Zang A, Christian Wagner F, Stanchits S, et al. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys J Int, 1998, 135(3): 1113 doi: 10.1046/j.1365-246X.1998.00706.x [35] Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: The effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011 [36] Walter W R, Brune J N. Spectra of seismic radiation from a tensile crack. J Geophys Res:Solid Earth, 1993, 98(B3): 4449 doi: 10.1029/92JB02414 [37] Madariaga R. Dynamics of an expanding circular fault. Bull Seismol Soc Am, 1976, 66(3): 639 doi: 10.1785/BSSA0660030639 -