<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

冷凍鑄造A356鋁合金微觀組織分析

楊浩秦 單忠德 劉豐 王怡飛

楊浩秦, 單忠德, 劉豐, 王怡飛. 冷凍鑄造A356鋁合金微觀組織分析[J]. 工程科學學報, 2022, 44(8): 1331-1337. doi: 10.13374/j.issn2095-9389.2021.01.16.002
引用本文: 楊浩秦, 單忠德, 劉豐, 王怡飛. 冷凍鑄造A356鋁合金微觀組織分析[J]. 工程科學學報, 2022, 44(8): 1331-1337. doi: 10.13374/j.issn2095-9389.2021.01.16.002
YANG Hao-qin, SHAN Zhong-de, LIU Feng, WANG Yi-fei. Microstructure analysis of freeze-cast A356 aluminum alloy[J]. Chinese Journal of Engineering, 2022, 44(8): 1331-1337. doi: 10.13374/j.issn2095-9389.2021.01.16.002
Citation: YANG Hao-qin, SHAN Zhong-de, LIU Feng, WANG Yi-fei. Microstructure analysis of freeze-cast A356 aluminum alloy[J]. Chinese Journal of Engineering, 2022, 44(8): 1331-1337. doi: 10.13374/j.issn2095-9389.2021.01.16.002

冷凍鑄造A356鋁合金微觀組織分析

doi: 10.13374/j.issn2095-9389.2021.01.16.002
基金項目: 國家重點研發計劃資助項目(2021YFB3401200);國家重點研發計劃資助項目(2020YFF0217703);中國機械科學研究總院集團有限公司先進成形技術與裝備國家重點實驗室開放基金資助項目(SKL2020008)
詳細信息
    通訊作者:

    E-mail:Yang-haoqin@nuaa.edu.cn

  • 中圖分類號: TG146.22

Microstructure analysis of freeze-cast A356 aluminum alloy

More Information
  • 摘要: 基于數字化無模冷凍鑄造精密成形技術實現了冷凍砂型的快速成形,對其澆注A356高溫鋁合金獲得冷凍鑄造平板試件。采用電子探針顯微分析技術對冷凍鑄造和樹脂砂型鑄造鑄件微量元素的分布進行了表征,同時對冷凍鑄造和樹脂砂型鑄造鑄件斷裂形貌進行了分析。結果表明,冷凍鑄造Si元素在鋁基體相中的溶解度較樹脂砂型鑄造顯著提高,冷凍鑄造較樹脂砂型鑄造試件中Mg元素分布均勻,樹脂砂型鑄造試件中出現較多的Mg元素成分偏析區;冷凍鑄造試件斷裂方式為韌性和脆性的混合斷裂模式,樹脂砂型鑄造試件的斷裂形貌為解理臺階破壞形貌和長方狀的撕裂結構形貌,合金偏向于脆性斷裂。

     

  • 圖  1  冷凍砂型數字化無模切削過程

    Figure  1.  Digital patternless cutting process of the frozen sand mold

    圖  2  A356鋁合金冷凍鑄造薄板件

    Figure  2.  The frozen casting sheet parts of A356 aluminum alloy

    圖  3  不同精煉除氣溫度對鋁合金中氣孔密度的影響規律. (a)未精煉處理;(b)750 ℃精煉處理;(c)720 ℃精煉處理;(d)690 ℃精煉處理

    Figure  3.  Effect of different refining degassing temperatures on the porosity density in the aluminum alloy: (a) unrefined treatment; (b) 750 ℃ refining treatment; (c) 720 ℃ refining treatment; (d) 690 ℃ refining treatment

    圖  4  冷凍鑄造和樹脂砂型鑄造的A356鋁合金溫度冷卻曲線

    Figure  4.  Temperature cooling curves of the A356 aluminum alloy by frozen and resin sand castings

    圖  5  冷凍砂型和樹脂砂型鑄造試件微觀成分面掃結果.(a)冷凍鑄造Si元素面掃分布;(b)樹脂砂型鑄造Si元素面掃分布;(c)冷凍砂型鑄造Mg元素面掃分布;(d)樹脂砂型鑄造Mg元素面掃分布

    Figure  5.  Micro-composition surface scanning results of frozen sand and resin sand casting specimens: Si element surface scanning distribution of (a) frozen casting and (b) resin sand casting; Mg element surface scanning distribution of (c) frozen sand casting and (d) resin sand casting

    圖  6  冷凍砂型和樹脂砂型鑄造鋁合金抗拉強度

    Figure  6.  Tensile strength of the aluminum alloy cast in the frozen sand mold and resin sand mold

    圖  7  冷凍鑄造和樹脂砂型鑄造A356鋁合金斷口形貌.(a)冷凍鑄造試件拉伸斷口,低倍;(b)冷凍鑄造試件拉伸斷口,高倍;(c)樹脂砂型鑄造試件拉伸斷口,低倍;(d)樹脂砂型鑄造試件拉伸斷口,高倍

    Figure  7.  Fracture morphology of the A356 aluminum alloy cast by the frozen and resin sand mold: the tensile fracture of frozen casting specimen with low magnification (a) and high magnification (b); the fracture of resin sand specimen with low magnification (c) and high magnification (d)

    表  1  A356鋁合金主要化學成分(質量分數)

    Table  1.   Chemical composition of the A356 aluminum alloy (Mass fraction) %

    SiMgTiFeCuZnAl
    7.240.3240.1920.1540.0070.01292.071
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precis Eng Manuf, 2012, 13(7): 1095 doi: 10.1007/s12541-012-0143-y
    [2] Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74
    [3] Shan Z D, Zhu F X. Wear mechanism and prediction model of polycrystalline diamond tool in milling sand mould. J Mech Eng, 2018, 54(17): 124 doi: 10.3901/JME.2018.17.124

    單忠德, 朱福先. 應用PCD 刀具銑削砂型的刀具磨損機理和預測模型. 機械工程學報, 2018, 54(17):124 doi: 10.3901/JME.2018.17.124
    [4] Liu L M, Shan Z D, Liu F, et al. High-quality manufacturing method of complicated castings based on multi-material hybrid moulding process. China Foundry, 2018, 15(5): 343 doi: 10.1007/s41230-018-8053-y
    [5] Guo Z, Shan Z D, Liu F, et al. Experimental investigation on the performance and mesostructure of multi-material composite 3D-printed sand mold. Rapid Prototyp J, 2019, 26(2): 309 doi: 10.1108/RPJ-10-2018-0265
    [6] Shan Z D, Guo Z, Du D, et al. Digital high-efficiency print forming method and device for multi-material casting molds. Front Mech Eng, 2020, 15(2): 328 doi: 10.1007/s11465-019-0574-6
    [7] Shan Z D. Patternless Casting. Beijing: China Machine Press, 2017

    單忠德. 無模鑄造. 北京: 機械工業出版社, 2017
    [8] Shan Z D, Yang H Q, Liu F, et al. Performance of digital patternless freeze-casting sand mould. China Foundry, 2020, 17(4): 308 doi: 10.1007/s41230-020-9163-x
    [9] Yang H Q, Shan Z D, Wang Y F, et al. Simulation of temperature field of A356 aluminum alloy in freeze casting // 4th International Conference on Fluid Mechanics and Industrial Applications. Taiyuan, 2020, 1600(1): 012045
    [10] Yang H Q. Study on Forming Mechanism of Digital Patternless Freezing Casting [Dissertation]. Beijing: China Academy of Machinery Science and Technology, 2020

    楊浩秦. 數字化無模冷凍鑄造成形機理研究 [學位論文]. 北京: 機械科學研究總院, 2020
    [11] Guo L J, Shan Z D, Liu L M, et al. Effect of sand-mold material and extrusion forming process on sand-mold surface properties. Chin J Eng, 2021, 43(2): 273

    郭莉軍, 單忠德, 劉麗敏, 等. 型砂材質與擠壓成形工藝對砂型表面性能的影響. 工程科學學報, 2021, 43(2):273
    [12] Shan Z D, Yang H Q, Liu F, et al. Research on forming method of digital patternless freezing casting. Rare Met Mater Eng, 2020, 49(12): 4321

    單忠德, 楊浩秦, 劉豐, 等. 數字化無模冷凍鑄造成形方法研究. 稀有金屬材料與工程, 2020, 49(12):4321
    [13] Zhang J, Zhang D Q, Wu P W, et al. Numerical simulation research of investment casting for TiB2/ A356 aluminum base composite. Rare Met Meter Eng, 2014, 43(1): 47 doi: 10.1016/S1875-5372(14)60050-3
    [14] Samuel E, Golbahar B, Samuel A M, et al. Effect of grain refiner on the tensile and impact properties of Al−Si−Mg cast alloys. Mater Des (1980—2015), 2014, 56: 468
    [15] Jones H. Cooling rates during rapid solidification from a chill surface. Mater Lett, 1996, 26(3): 133 doi: 10.1016/0167-577X(95)00213-8
    [16] Jia L M, Xu D M, Guo J J, et al. Effect of cooling rate on structure and tensile strength of centrifugally cast TC4 alloy in ceramic-shell mold. Chin J Nonferrous Met, 2010, 20(4): 667

    賈麗敏, 徐達鳴, 郭景杰, 等. 離心鑄造TC4合金冷速對其組織和力學性能的影響. 中國有色金屬學報, 2010, 20(4):667
    [17] Chen Z W, Lei Y M, Zhang H F. Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot. J Alloys Compd, 2011, 509(27): 7473 doi: 10.1016/j.jallcom.2011.04.082
    [18] Li X Y, Lu Y L, Wang J, et al. Effect of rare earth erbium on microstructure and mechanical properties of A356 aluminum alloy. J Mater Eng, 2018, 46(1): 67 doi: 10.11868/j.issn.1001-4381.2016.001066

    李曉燕, 盧雅琳, 王健, 等. 稀土Er對A356鋁合金微觀組織和力學性能的影響. 材料工程, 2018, 46(1):67 doi: 10.11868/j.issn.1001-4381.2016.001066
    [19] Kobayashi T. Strength and fracture of aluminum alloy. Mater Sci Eng:A, 2000, 280(1): 8 doi: 10.1016/S0921-5093(99)00649-8
    [20] Jiang W M, Fan Z T, Liu D J. Microstructure, tensile properties and fractography of A356 alloy under as-cast and T6 obtained with expendable pattern shell casting process. Trans Nonferrous Met Soc China, 2012, 22(Suppl 1): s7
    [21] Wang Z J, Si N C, Wang J, et al. Effect of dynamic composite refinement and modification on microstructure of A356 aluminum alloy. J Mater Eng, 2017, 45(1): 20 doi: 10.11868/j.issn.1001-4381.2015.000077

    王正軍, 司乃潮, 王俊, 等. 動態復合細化變質對A356鋁合金顯微組織的影響. 材料工程, 2017, 45(1):20 doi: 10.11868/j.issn.1001-4381.2015.000077
    [22] Wang C H, Ni H J, Sun B D, et al. Development in method and technology of aluminum melt hydrogen-removal. Foundry, 2001, 50(4): 179 doi: 10.3321/j.issn:1001-4977.2001.04.001

    王長海, 倪紅軍, 孫寶德, 等. 鋁熔體除氫技術的進展. 鑄造, 2001, 50(4):179 doi: 10.3321/j.issn:1001-4977.2001.04.001
    [23] Menargues S, Martín E, Baile M T, et al. New short T6 heat treatments for aluminium silicon alloys obtained by semisolid forming. Mater Sci Eng:A, 2015, 621: 236 doi: 10.1016/j.msea.2014.10.078
    [24] Wang H P, Yao W J, Wei B. Remarkable solute trapping within rapidly growing dendrites. Appl Phys Lett, 2006, 89(20): 201905 doi: 10.1063/1.2387971
    [25] Wang T T. Numerical Modeling and Simulation Software Development of Microporosity Eveolution in Aluminum Alloy [Dissertation ]. Nanjing: Southeast University, 2016

    王韜濤. 鋁合金顯微氣孔演化數值模擬及其軟件開發[學位論文]. 南京: 東南大學, 2016
    [26] Liao H C, Wu Y N, Ding K. Hardening response and precipitation behavior of Al–7%Si–0.3%Mg alloy in a pre-aging process. Mater Sci Eng: A, 2013, 560: 811
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  878
  • HTML全文瀏覽量:  366
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-16
  • 網絡出版日期:  2021-04-16
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回