Research progress on the design principle and preparation of low ice adhesion surface
-
摘要: 表面結冰給通訊、電力等工業領域帶來巨大損失,電加熱和噴灑乙二醇等主動除冰方法雖然在一定程度上可以解決上述問題,但在能源、人力、環境方面需付出較高代價。為解決這一問題,低成本、低能耗的被動式防/除冰表面被寄予厚望。防/除冰表面主要分為延長結冰時間的防冰表面和低冰粘附強度的除冰表面。由于實際工況的復雜性,除冰表面比防冰表面更具有可實現性。除冰表面主要與低表面能、界面滑動和裂紋產生相關,低冰粘附強度表面按實現機理可分為化學改性低表面能表面、潤滑表面、界面滑動表面和裂紋源表面。本文對不同類型低冰粘附表面的低冰粘附強度產生的原因和表面的制備方法進行總結。同時,對冰粘附強度的測量標準進行了說明和討論,以解釋不同的測試方法對防/除冰性能測試結果造成的差異。Abstract: Ice accretion on a bare surface causes a serious problem in industries and daily life such as communication, electricity, and transportation. At present, the main de-icing method is active de-icing, which includes mechanical de-icing or electric-thermal de-icing and spraying glycol anti-icing agents. These methods have a high cost of manpower, energy, and environment. In addition, active de-icing is not applicable in many scenarios. To solve this problem, icephobic surfaces are expected to be widely used. Icephobic surfaces can be divided into surfaces that prolong the freezing time and surfaces with low ice adhesion. Anti-icing surfaces, represented by superhydrophobic surfaces, can inhibit a stable formation of ice nucleation from delaying ice formation, which enables the supercooled droplets to rebound from the surface to prevent ice formation. However, under high humidity and high atmospheric pressure, the superhydrophobic surface may lose efficiency due to frosting and other reasons. Compared with anti-icing surfaces, de-icing surfaces are more achievable. Thus, this article mainly explores surfaces with low ice adhesion. Passive de-icing mainly refers to the construction of the ice sparing surface on a bare substrate to reduce the adhesion strength of icing. Compared with active de-icing methods, the passive method has advantages of low energy consumption, low cost, and environmental friendliness. The realization of low ice adhesion is mainly related to low surface energy, interface slippage, and crack initiation. According to the realization mechanism, low ice adhesion surfaces can be divided into low surface energy surfaces, lubricated surfaces, interfacial slippage and low shear modulus surfaces, and crack initiators surfaces. The design principles and mechanism of the de-icing surface are explored and summarized in this article. In addition, to eliminate the doubts about the large variations in the reported ice adhesion strength caused by different measurement methods, the measurement standards of ice adhesion are also analyzed and discussed.
-
Key words:
- de-icing /
- ice adhesion /
- test standard /
- surface design /
- superwetting
-
圖 2 化學改性低表面能表面形貌及其制備流程示意圖。(a)自組裝單分子層示意圖[19];(b)自組裝單層膜表面SEM圖像[21];(c)CVD沉積聚四氟乙烯表面SEM圖像[22];(d)iCVD法沉積氟化聚合物表面過程示意圖,其中TBPO為過氧化丁基(tert-butyl peroxide)[24]
Figure 2. Morphology and preparation flow diagram of the chemical-modified low surface energy surface: (a) schematic diagram of the self-assembled monolayer[19]; (b) SEM image of the surface of the self-assembled monolayer[21]; (c) SEM image of the surface of the deposited PTFE[22]; (d) fluorinated polymer surface deposition process by iCVD, TBPO is tert-butyl peroxide[24]
圖 4 SLIPs表面形貌及其示意圖。(a)閉孔結構SEM圖像[28];(b)未經處理的鋁區域和PPy涂層區域的SEM圖像[29];(c)在鎂合金上制備的多層SLIPs涂層的示意圖[30];(d)聚硅氧烷和氟化POSS自組裝涂層的示意圖[31]
Figure 4. Topography and schematic diagram of SLIPs: (a) SEM image of the nanohole array[28]; (b) SEM images of the untreated aluminum area and the PPy coated area[29]; (c) schematic diagram of various barriers proposed in the prepared SLIPs coating on the magnesium alloy[30]; (d) schematic diagram of the self-assembled coating of polysiloxane and fluorinated POSS[31]
圖 5 自潤滑除冰表面的設計策略。(a)LLG的制備示意圖[36];(b)多功能防冰水凝膠表面具備的三種防除冰手段[37];(c)離子擴散產生潤滑層的示意圖[38]
Figure 5. Design strategy of the self-lubricating de-icing surface: (a) schematic diagram of the preparation of ice-repellent LLG[36]; (b) three ways to prevent and eliminate ice on the surface of multifunctional anti-icing hydrogel[37]; (c) schematic diagram of a lubricant layer produced by ion diffusion[38]
圖 9 裂紋源表面除冰機理及該表面典型形式。(a)裂紋源表面機理示意圖;(b)亞微米級泡沫的橫截面SEM圖像和相應的變形性能示意圖[49]
Figure 9. De-icing mechanism and typical form of crack source surface: (a) schematic diagram of the surface mechanism of the crack source; (b) SEM image of the cross-section of the submicron foam and the schematic diagram of the deformation performance[49]
圖 10 裂紋源表面設計的策略。(a)包含亞結構的PDMS表面剪切加載前后的變形的示意圖[13];(b)兩圖分別為樣式1的硅模板及其得到的表面[50];(c)局部應力集中除冰表面結構示意圖[51];(d)第II相位置形成裂紋示意圖[51]
Figure 10. Strategy of the crack source surface design: (a) schematic diagram of the deformation before and after shear loading on the PDMS surface with substructure[13]; (b) the two figures show the silicon template of style 1 and its surface[50]; (c) schematic diagram of the de-icing surface with the local stress[51]; (d) cracks are formed under the coordinates of phase II[51]
a—the length of the structure; b—the pitch of the structure in the x direction; c—the pitch of the structure in the y direction; h—the height of the structure
表 1 不同表面冰粘附強度大小以及相應的測試方法和測試參數
Table 1. Different surface ice adhesion strengths and corresponding test methods and test parameters
Reference Adhesion strengh/kPa Method Test
temperature/°CArea
square/mm2Probe
speed/(mm·s?1)Probe
height/mmfreezing
time/hfreezing
temperature/°C[28] 10±7 Horizontal shear ?10 24 0.1 <1 ?20 [29] 15.6±3.6 Horizontal shear ?10 24 0.1 <1 ?20 [31] 2.5±0.3 Horizontal shear ?15 0.5 2 ?18 [32] 4.27±0.92 Horizontal shear ?20 100 0.5 2 [35] 27.0±6.2 Horizontal shear ?15 5 ?15 [36] 55±15 Horizontal shear ?18 and ?60 314 0.01 <1 [41] 5.2±0.4 Horizontal shear ?18 595 0.01 <1 2 ?18 [42] 13.0±1.3 Horizontal shear ?18 595 0.01 <1 2 ?18 [44] 6.0±0.9 Horizontal shear ?18 595 0.01 <1 2 ?18 [45] 38.3 ± 0.5 Horizontal shear ?18 595 0.01 <1 2 ?18 [46] Horizontal shear ?10 or ?20 0.074 [50] Horizontal shear ?25 225 0.1 3 ?25 [53] 4.8±2.0 Horizontal shear ?15 176 0.05 0.5 1 [24] 185.3±83.7 Horizontal shear ?15 100 1.3 2 ?15 [30] 40±3 Vertical shear ?20 68 [38] 5.7 Vertical shear ?30 176 0.01 <2 0.5 ?30 [40] 0.2 Vertical shear ?10 [49] 0.9 Vertical shear ?18 14 0.002 <1 24 ?18 [21] 86.2±29 Centrifugal test ?10 96 [22] 72±12 Centrifugal test ?10 www.77susu.com -
參考文獻
[1] Laforte J L, Allaire M A, Laflamme J. State-of-the-art on power line de-icing. Atmos Res, 1998, 46(1-2): 143 doi: 10.1016/S0169-8095(97)00057-4 [2] Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg Sci Technol, 2011, 65(1): 88 doi: 10.1016/j.coldregions.2010.01.005 [3] Zhang H, Wu J T. Research on typical flight accidents of civil aircraft under extreme climate conditions. Sci Technol Innov, 2019(15): 132張惠, 吳敬濤. 極端氣候環境條件下民用飛機典型飛行事故研究. 科技與創新, 2019(15):132 [4] Samuelsen E M. Ship-icing prediction methods applied in operational weather forecasting. QJR Meteorol Soc, 2018, 144(710): 13 doi: 10.1002/qj.3174 [5] Xie Q, Chen H L, Zhang J F. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms. Chin J Ship Res, 2017, 12(1): 45 doi: 10.3969/j.issn.1673-3185.2017.01.008謝強, 陳海龍, 章繼峰. 極地航行船舶及海洋平臺防冰和除冰技術研究進展. 中國艦船研究, 2017, 12(1):45 doi: 10.3969/j.issn.1673-3185.2017.01.008 [6] Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev, 2009, 13(2): 428 doi: 10.1016/j.rser.2007.11.009 [7] Fillion R M, Riahi A R, Edrisy A. A review of icing prevention in photovoltaic devices by surface engineering. Renew Sustain Energy Rev, 2014, 32: 797 doi: 10.1016/j.rser.2014.01.015 [8] Chen J, Luo Z Q, Fan Q R, et al. Anti-ice coating inspired by ice skating. Small, 2014, 10(22): 4693 doi: 10.1002/smll.201401557 [9] Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater, 2016, 1: 15003 [10] Eberle P, Tiwari M K, Maitra T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity. Nanoscale, 2014, 6(9): 4874 doi: 10.1039/C3NR06644D [11] Guo P, Zheng Y M, Wen M X, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv Mater, 2012, 24(19): 2642 doi: 10.1002/adma.201104412 [12] Mishchenko L, Hatton B, Bahadur V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano, 2010, 4(12): 7699 doi: 10.1021/nn102557p [13] He Z W, Xiao S B, Gao H J, et al. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter, 2017, 13(37): 6562 doi: 10.1039/C7SM01511A [14] R?nneberg S, He J Y, Zhang Z L. The need for standards in low ice adhesion surface research: a critical review. J Adhesion Sci Technol, 2020, 34(3): 319 doi: 10.1080/01694243.2019.1679523 [15] Fortin G, Perron J. Ice adhesion models to predict shear stress at shedding. J Adhesion Sci Technol, 2012, 26(4-5): 523 doi: 10.1163/016942411X574835 [16] Ryzhkin I A, Petrenko V F. Physical mechanisms responsible for ice adhesion. J Phys Chem B, 1997, 101(32): 6267 doi: 10.1021/jp9632145 [17] Petrenko V F, Peng S. Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs). Can J Phys, 2003, 81(1-2): 387 doi: 10.1139/p03-014 [18] van der Leeden M C, Frens G. Surface properties of plastic materials in relation to their adhering performance. Adv Eng Mater, 2002, 4(5): 280 doi: 10.1002/1527-2648(20020503)4:5<280::AID-ADEM280>3.0.CO;2-Z [19] Kulinich S A, Farzaneh M. Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers. Surf Sci, 2004, 573(3): 379 doi: 10.1016/j.susc.2004.10.008 [20] Somlo B, Gupta V. A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech Mater, 2001, 33(8): 471 doi: 10.1016/S0167-6636(01)00068-0 [21] Kulinich S A, Honda M, Zhu A L, et al. The icephobic performance of alkyl-grafted aluminum surfaces. Soft Matter, 2015, 11(5): 856 doi: 10.1039/C4SM02204A [22] Jafari R, Menini R, Farzaneh M. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl Surf Sci, 2010, 257(5): 1540 doi: 10.1016/j.apsusc.2010.08.092 [23] Martin T P, Lau K K S, Chan K, et al. Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings. Surf Coat Technol, 2007, 201(22-23): 9400 doi: 10.1016/j.surfcoat.2007.05.003 [24] Sojoudi H, McKinley G H, Gleason K K. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Mater Horiz, 2015, 2(1): 91 doi: 10.1039/C4MH00162A [25] Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365): 443 doi: 10.1038/nature10447 [26] Petrenko V F. Study of the surface of ice, ice/solid and ice/liquid interfaces with scanning force microscopy. J Phys Chem B, 1997, 101(32): 6276 doi: 10.1021/jp963217h [27] Smith J D, Gounden C, Yague J. Methods and Articles for Liquid-impregnated Surfaces for the Inhibition of Vapor or Gas Nucleation: US Patent, US2014/0314991A1. 2014-10-23 [28] Vogel N, Belisle R A, Hatton B, et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nat Commun, 2013, 4: 2176 doi: 10.1038/ncomms3176 [29] Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano, 2012, 6(8): 6569 doi: 10.1021/nn302310q [30] Zhang J L, Gu C D, Tu J P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Appl Mater Interfaces, 2017, 9(12): 11247 doi: 10.1021/acsami.7b00972 [31] Tao C, Li X H, Liu B, et al. Highly icephobic properties on slippery surfaces formed from polysiloxane and fluorinated POSS. Prog Org Coat, 2017, 103: 48 doi: 10.1016/j.porgcoat.2016.11.018 [32] Wang Y L, Yao X, Chen J, et al. Organogel as durable anti-icing coatings. Sci China Mater, 2015, 58(7): 559 doi: 10.1007/s40843-015-0069-7 [33] Sett S, Yan X, Barac G, et al. Lubricant-infused surfaces for low-surface-tension fluids: promise versus reality. ACS Appl Mater Interfaces, 2017, 9(41): 36400 doi: 10.1021/acsami.7b10756 [34] Chen J, Dou R M, Cui D P, et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl Mater Interfaces, 2013, 5(10): 4026 doi: 10.1021/am401004t [35] Dou R M, Chen J, Zhang Y F, et al. Anti-icing coating with an aqueous lubricating layer. ACS Appl Mater Interfaces, 2014, 6(10): 6998 doi: 10.1021/am501252u [36] Wang F, Xiao S B, Zhuo Y Z, et al. Liquid layer generators for excellent icephobicity at extremely low temperatures. Mater Horiz, 2019, 6(10): 2063 doi: 10.1039/C9MH00859D [37] He Z Y, Wu C Y, Hua M T, et al. Bioinspired multifunctional anti-icing hydrogel. Matter, 2020, 2(3): 723 doi: 10.1016/j.matt.2019.12.017 [38] Li T, Ibá?ez-Ibá?ez P F, H?konsen V, et al. Self-deicing electrolyte hydrogel surfaces with Pa-level ice adhesion and durable antifreezing/antifrost performance. ACS Appl Mater Interfaces, 2020, 12: 35572 doi: 10.1021/acsami.0c06912 [39] Yao X, Liu J J, Yang C H, et al. Hydrogel paint. Adv Mater, 2019, 31(39): 1903062 doi: 10.1002/adma.201903062 [40] Chaudhury M K, Kim K H. Shear-induced adhesive failure of a rigid slab in contact with a thin confined film. Eur Phys J E Soft Matter, 2007, 23(2): 175 doi: 10.1140/epje/i2007-10171-x [41] Golovin K, Kobaku S P R, Lee D H, et al. Designing durable icephobic surfaces. Sci Adv, 2016, 2(3): e1501496 doi: 10.1126/sciadv.1501496 [42] Beemer D L, Wang W, Kota A K. Durable gels with ultra-low adhesion to ice. J Mater Chem A, 2016, 4(47): 18253 doi: 10.1039/C6TA07262C [43] Zhuo Y Z, Li T, Wang F, et al. An ultra-durable icephobic coating by a molecular pulley. Soft Matter, 2019, 15(17): 3607 doi: 10.1039/C9SM00162J [44] Li C H, Wang C, Keplinger C, et al. A highly stretchable autonomous self-healing elastomer. Nat Chem, 2016, 8(6): 618 doi: 10.1038/nchem.2492 [45] Zhuo Y Z, H?konsen V, He Z W, et al. Enhancing the mechanical durability of icephobic surfaces by introducing autonomous self-healing function. ACS Appl Mater Interfaces, 2018, 10(14): 11972 doi: 10.1021/acsami.8b01866 [46] Zhuo Y Z, Xiao S B, H?konsen V, et al. Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Appl Mater Today, 2020, 19: 100542 doi: 10.1016/j.apmt.2019.100542 [47] Golovin K, Dhyani A, Thouless M D, et al. Low-interfacial toughness materials for effective large-scale deicing. Science, 2019, 364(6438): 371 doi: 10.1126/science.aav1266 [48] Nosonovsky M, Hejazi V. Why superhydrophobic surfaces are not always icephobic. ACS Nano, 2012, 6(10): 8488 doi: 10.1021/nn302138r [49] He Z W, Zhuo Y Z, He J Y, et al. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter, 2018, 14(23): 4846 doi: 10.1039/C8SM00820E [50] He Z W, Zhuo Y Z, Wang F, et al. Understanding the role of hollow sub-surface structures in reducing ice adhesion strength. Soft Matter, 2019, 15(13): 2905 doi: 10.1039/C9SM00024K [51] Irajizad P, Al-Bayati A, Eslami B, et al. Stress-localized durable icephobic surfaces. Mater Horiz, 2019, 6(4): 758 doi: 10.1039/C8MH01291A [52] Wang N, Xiong D S, Deng Y L, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces, 2015, 7(11): 6260 doi: 10.1021/acsami.5b00558 [53] Ahmadi S F, Nath S, Iliff G J, et al. Passive antifrosting surfaces using microscopic ice patterns. ACS Appl Mater Interfaces, 2018, 10(38): 32874 doi: 10.1021/acsami.8b11285 [54] Ahn J, Jeon J, Heu C S, et al. Three-dimensionally programmed slippery wrinkles with high stretchability for tunable functionality of icephobicity and effective water harvesting. Adv Mater Interfaces, 2018, 5(21): 1800980 doi: 10.1002/admi.201800980 [55] Varanasi K K, Deng T, David Smith J, et al. Frost formation and ice adhesion on superhydrophobic surfaces. Appl Phys Lett, 2010, 97(23): 234102 doi: 10.1063/1.3524513 [56] Xiao S, Skallerud B H, Wang F, et al. Enabling sequential rupture for lowering atomistic ice adhesion. Nanoscale, 2019, 11(35): 16262 doi: 10.1039/C9NR00104B [57] Jamil M, Ali A, Haq F, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism. Langmuir, 2018, 34(50): 15425 doi: 10.1021/acs.langmuir.8b03276 [58] Makkonen L. Ice adhesion—theory, measurements and countermeasures. J Adhesion Sci Technol, 2012, 26(4-5): 413 doi: 10.1163/016942411X574583 [59] Løset S, Shkhinek K N, Gudmestad O T, et al. Actions from Ice on Arctic Offshore and Coastal Structures. St Petersburg: LAN, 2006 [60] Wang C Y, Gupta M C, Yeong Y H, et al. Factors affecting the adhesion of ice to polymer substrates. J Appl Polym Sci, 2018, 135(24): 45734 doi: 10.1002/app.45734 [61] Irajizad P, Nazifi S, Ghasemi H. Icephobic surfaces: Definition and figures of merit. Adv Colloid Interface Sci, 2019, 269: 203 doi: 10.1016/j.cis.2019.04.005 [62] Wang C Y, Zhang W, Siva A, et al. Laboratory test for ice adhesion strength using commercial instrumentation. Langmuir, 2014, 30(2): 540 doi: 10.1021/la4044254 [63] Work A, Lian Y S. A critical review of the measurement of ice adhesion to solid substrates. Prog Aerosp Sci, 2018, 98: 1 doi: 10.1016/j.paerosci.2018.03.001 [64] R?nneberg S, Laforte C, Volat C, et al. The effect of ice type on ice adhesion. AIP Adv, 2019, 9(5): 055304 doi: 10.1063/1.5086242 [65] Chen Y, Wang W H, Dong W, et al. Numerical study on the adhesion strength between ice and aluminium based on a cohesive zone model // Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, 2014 -