<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于切面識別的房間隔缺損智能輔助診斷

張文靜 李文秀 劉愛軍 武興坤 李劍峰 羅濤

張文靜, 李文秀, 劉愛軍, 武興坤, 李劍峰, 羅濤. 基于切面識別的房間隔缺損智能輔助診斷[J]. 工程科學學報, 2021, 43(9): 1166-1173. doi: 10.13374/j.issn2095-9389.2021.01.14.007
引用本文: 張文靜, 李文秀, 劉愛軍, 武興坤, 李劍峰, 羅濤. 基于切面識別的房間隔缺損智能輔助診斷[J]. 工程科學學報, 2021, 43(9): 1166-1173. doi: 10.13374/j.issn2095-9389.2021.01.14.007
ZHANG Wen-jing, LI Wen-xiu, LIU Ai-jun, WU Xing-kun, LI Jian-feng, LUO Tao. Intelligent auxiliary diagnosis of atrial septal defect based on view classification[J]. Chinese Journal of Engineering, 2021, 43(9): 1166-1173. doi: 10.13374/j.issn2095-9389.2021.01.14.007
Citation: ZHANG Wen-jing, LI Wen-xiu, LIU Ai-jun, WU Xing-kun, LI Jian-feng, LUO Tao. Intelligent auxiliary diagnosis of atrial septal defect based on view classification[J]. Chinese Journal of Engineering, 2021, 43(9): 1166-1173. doi: 10.13374/j.issn2095-9389.2021.01.14.007

基于切面識別的房間隔缺損智能輔助診斷

doi: 10.13374/j.issn2095-9389.2021.01.14.007
基金項目: 國家自然科學基金資助項目(61571065)
詳細信息
    通訊作者:

    E-mail: tluo@bupt.edu.cn

  • 中圖分類號: R318

Intelligent auxiliary diagnosis of atrial septal defect based on view classification

More Information
  • 摘要: 針對超聲心動圖像質量差、噪聲多,傳統卷積神經網絡架構對超聲心動圖像的學習能力有限、表達不充分的缺點,提出了一種基于標準切面識別的房間隔缺損(Atrial septal defect,ASD)智能輔助診斷模型。該模型通過對超聲心動圖像進行切面識別,充分融合其不同切面的語義特征,使得診斷的準確率得到明顯提升。此外,還對其進行雙邊濾波保邊去噪,并基于此模型搭建房間隔缺損智能輔助診斷系統(簡稱ASD輔助診斷系統)。結果表明,該ASD輔助診斷系統的準確率高達97.8%,且與傳統卷積神經網絡相比大大降低了假陰性率。

     

  • 圖  1  超聲心動圖對比。(a)ASD患者;(b)健康人

    Figure  1.  Contrast in echocardiography of ASD patient (a) and healthy people (b)

    圖  2  超聲心動圖6類標準切面。(a)胸骨旁大動脈短軸;(b)心尖四腔心;(c)胸骨旁四腔心;(d)劍突下上下腔長軸;(e)劍突下大動脈短軸;(f)劍突下雙房心

    Figure  2.  Six normal views of echocardiography: (a) parasternal short-axis view; (b) apical four-chamber view; (c) parasternal four-chamber view; (d) subcostal inferior vena cava; (e) subcostal short axial of aorta; (f) subcostal left and right atrium

    圖  3  噪聲濾波效果對比。(a)原始圖像;(b)均值濾波;(c)高斯濾波;(d)雙邊濾波

    Figure  3.  Comparison of different noise filter algorithms: (a) original image; (b) mean filter; (c) Gaussian filter; (d) bilateral filter

    圖  4  ASD輔助診斷模型總體架構

    Figure  4.  ASD auxiliary diagnosis model overall architecture

    圖  5  ASD輔助診斷模型完整架構

    Figure  5.  ASD auxiliary diagnosis model completed architecture

    圖  6  網絡結構及參數

    Figure  6.  Network structure and parameters

    圖  7  房間隔遮擋測試。(a,c)遮擋前;(b,d)遮擋后

    Figure  7.  Atrial septal covering test: (a,c) before covering; (b,d)covered

    表  1  ASD診斷測試結果

    Table  1.   Contrast among different models

    ModelWith bilateral
    filtering
    Accuracy /
    %
    False negative
    rate / %
    False positive
    rate / %
    Resnet50?no view-netYes86.72.855.6
    Densenet121?no view-netYes86.713.911.1
    Densenet?with view-netNo93.35.611
    Densenet?with view-netYes97.82.80
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X F, Xie M X. Textbook of Echocardiography. 5th Ed. Beijing: People’s Medical Publishing House, 2016

    王新房, 謝明星. 超聲心動圖學. 5版. 北京: 人民衛生出版社, 2016
    [2] Li J W. Trend and epidemiological analysis of congenital heart disease. Chin J Cardiovasc Rehabilitation Med, 2017, 26(1): 60 doi: 10.3969/j.issn.1008-0074.2017.01.17

    黎潔雯. 先天性心臟病的流行趨勢及流行病學分析. 心血管康復醫學雜志, 2017, 26(1):60 doi: 10.3969/j.issn.1008-0074.2017.01.17
    [3] Zhang L Y, Qiao Y H, Ning S F, et al. Analysis of ultrasonic diagnosis of 39 atrial septal defects. China Pract Med, 2009, 4(14): 95 doi: 10.3969/j.issn.1673-7555.2009.14.067

    張麗媛, 喬玉紅, 寧淑范, 等. 房間隔缺損39例超聲診斷分析. 中國實用醫藥, 2009, 4(14):95 doi: 10.3969/j.issn.1673-7555.2009.14.067
    [4] Tao P, Fu Z L, Zhu K, et al. Echocardiogram view recognition using deep convolutional neural network. J Comput Appl, 2017, 37(5): 1434 doi: 10.11772/j.issn.1001-9081.2017.05.1434

    陶攀, 付忠良, 朱鍇, 等. 基于深度學習的超聲心動圖切面識別方法. 計算機應用, 2017, 37(5):1434 doi: 10.11772/j.issn.1001-9081.2017.05.1434
    [5] Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning. Npj Digit Med, 2018, 1(1): 6 doi: 10.1038/s41746-017-0013-1
    [6] Madani A, Ong J R, Tibrewal A, et al. Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. Npj Digit Med, 2018, 1(1): 59 doi: 10.1038/s41746-017-0008-y
    [7] Teng L, Fu Z L, Yao Y. Interactive translation in echocardiography training system with enhanced cycle-GAN. IEEE Access, 2020, 8: 106147 doi: 10.1109/ACCESS.2020.3000666
    [8] Teng L, Fu Z L, Ma Q, et al. Interactive echocardiography translation using few-shot GAN transfer learning. Comput Math Methods Med, 2020, 2020: 1487035
    [9] Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms. Npj Digit Med, 2020, 3(1): 1 doi: 10.1038/s41746-019-0211-0
    [10] Veni G, Moradi M, Bulu H K, et al. Echocardiography segmentation based on a shape-guided deformable model driven by a fully convolutional network prior // 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, 2018: 898
    [11] Leclerc S, Smistad E, Pedrosa J, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging, 2019, 38(9): 2198 doi: 10.1109/TMI.2019.2900516
    [12] Li Y W, Ho C P, Toulemonde M, et al. Fully automatic myocardial segmentation of contrast echocardiography sequence using random forests guided by shape model. IEEE Trans Med Imaging, 2017, 37(5): 1081
    [13] Lu Y, Fu X H, Li X Q, et al. Cardiac chamber segmentation using deep learning on magnetic resonance images from patients before and after atrial septal occlusion surgery // 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal, 2020: 1211
    [14] Zyuzin V, Mukhtarov A, Neustroev D, et al. Segmentation of 2D echocardiography images using residual blocks in U-net architectures // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg, 2020: 499
    [15] Smistad E, ?stvik A, Salte I M, et al. Fully automatic real-time ejection fraction and MAPSE measurements in 2D echocardiography using deep neural networks // 2018 IEEE International Ultrasonics Symposium (IUS). Kobe, 2018: 1
    [16] Davis A, Billick K, Horton K, et al. Artificial intelligence and echocardiography: A primer for cardiac sonographers. J Am Soc Echocardiogr, 2020, 33(9): 1061 doi: 10.1016/j.echo.2020.04.025
    [17] Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: A survey. Biomed Res Int, 2018, 2018: 5137904
    [18] Wang X, Jia Y G, Sevenster M, et al. Representation learning of finding codes in structured echocardiogram reporting // 2018 IEEE International Conference on Healthcare Informatics (ICHI). New York, 2018: 429
    [19] Liao Z B, Girgis H, Abdi A, et al. On modelling label uncertainty in deep neural networks: Automatic estimation of intra- observer variability in 2D echocardiography quality assessment. IEEE Trans Med Imaging, 2020, 39(6): 1868 doi: 10.1109/TMI.2019.2959209
    [20] Singh Y, Roehr C C, Tissot C, et al. Education, training, and accreditation of neonatologist performed echocardiography in Europe—framework for practice. Pediatr Res, 2018, 84(1): 13
    [21] Mishra D, Chaudhury S, Sarkar M, et al. Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process Lett, 2018, 25(9): 1349 doi: 10.1109/LSP.2018.2858147
    [22] Sable A H, Jondhale K C. Modified double bilateral filter for sharpness enhancement and noise removal // 2010 International Conference on Advances in Computer Engineering. Bangalore, 2010: 295
    [23] Patil P D, Kumbhar A D. Bilateral filter for image denoising // 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). Greater Noida, 2015: 299
    [24] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 4700
    [25] Li J Y, Zhao Y K, Xue Z E, et al. A survey of model compression for deep neural networks. Chin J Eng, 2019, 41(10): 1229

    李江昀, 趙義凱, 薛卓爾, 等. 深度神經網絡模型壓縮綜述. 工程科學學報, 2019, 41(10):1229
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  740
  • HTML全文瀏覽量:  311
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-14
  • 網絡出版日期:  2021-04-07
  • 刊出日期:  2021-09-18

目錄

    /

    返回文章
    返回