<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于群體智能優化的MKL-SVM算法及肺結節識別

李陽 常佳樂 王宇陽

李陽, 常佳樂, 王宇陽. 基于群體智能優化的MKL-SVM算法及肺結節識別[J]. 工程科學學報, 2021, 43(9): 1157-1165. doi: 10.13374/j.issn2095-9389.2021.01.14.004
引用本文: 李陽, 常佳樂, 王宇陽. 基于群體智能優化的MKL-SVM算法及肺結節識別[J]. 工程科學學報, 2021, 43(9): 1157-1165. doi: 10.13374/j.issn2095-9389.2021.01.14.004
LI Yang, CHANG Jia-yue, WANG Yu-yang. MKL-SVM algorithm for pulmonary nodule recognition based on swarm intelligence optimization[J]. Chinese Journal of Engineering, 2021, 43(9): 1157-1165. doi: 10.13374/j.issn2095-9389.2021.01.14.004
Citation: LI Yang, CHANG Jia-yue, WANG Yu-yang. MKL-SVM algorithm for pulmonary nodule recognition based on swarm intelligence optimization[J]. Chinese Journal of Engineering, 2021, 43(9): 1157-1165. doi: 10.13374/j.issn2095-9389.2021.01.14.004

基于群體智能優化的MKL-SVM算法及肺結節識別

doi: 10.13374/j.issn2095-9389.2021.01.14.004
基金項目: 國家自然科學基金資助項目( 61806024); 吉林省教育廳十三五科研規劃項目(JJKH20181041KJ, JJKH20200680KJ); 吉林省科技發展計劃項目(20200401103GX)
詳細信息
    通訊作者:

    E-mail:liyangyaya1979@sina.com

  • 中圖分類號: TP391.4

MKL-SVM algorithm for pulmonary nodule recognition based on swarm intelligence optimization

More Information
  • 摘要: 針對單核學習支持向量機無法兼顧學習能力與泛化能力以及多核函數參數尋優問題,提出了一種基于群體智能優化的多核學習支持向量機算法。首先,研究了五種單核函數對支持向量機分類性能的影響,進一步提出具有全局性質的多項式核和局部性質的拉普拉斯核凸組合形式的多核學習支持向量機算法;其次,為增加粒子多樣性及快速尋優,將粒子群優化算法引入了遺傳算法中的雜交操作,并用此改進的群體智能優化算法對多核學習支持向量機進行參數尋優。最后,分別采用深度特征與手工特征作為識別算法的輸入,研究表明采用深度特征優于手工特征。故本文采用深度特征作為多核學習支持向量機的輸入,以交叉遺傳與粒子群混合智能優化算法作為其尋優方式。實驗選取合作醫院數據集對所提算法進行訓練并初步測試,進一步為了驗證所提算法的泛化能力,選取公開數據集LUNA16進行測試。實驗結果表明,本文算法易于跳出局部最優解,提升了算法的學習能力與泛化能力,具有較優的分類性能。

     

  • 圖  1  不同核函數的全局性與局部性分析。(a)多項式核;(b)感知機核;(c)高斯核;(d)指數核;(e)拉普拉斯核

    Figure  1.  Global and local analyses of various kernel functions: (a) polynomial kernel; (b) sigmoid kernel; (c) Gaussian kernel; (d) exponential kernel; (e) Laplacian kernel

    圖  2  GAPSO的算法流程圖

    Figure  2.  Flowchart of the GAPSO algorithm

    圖  3  不同算法的ROC曲線圖及PR曲線圖。(a)不同核函數SVM算法的ROC曲線;(b)不同核函數SVM算法的PR曲線;(c)不同尋優方式MKL-SVM算法的ROC曲線;(d)不同尋優方式MKL-SVM算法的PR曲線

    Figure  3.  ROC and PR curves of various algorithms: (a) ROC curves of SVM algorithms with various kernel functions; (b) PR curves of SVM algorithms with various kernel functions; (c) ROC curves of the MKL-SVM algorithm with various optimization algorithms; (d) PR curves of the MKL-SVM algorithm with various optimization algorithms

    圖  4  本文算法的適應度曲線

    Figure  4.  Fitness curve of the proposed algorithm

    圖  5  深度特征結合本文算法的適應度曲線

    Figure  5.  Fitness curve combining deep learning features with the proposed algorithm

    表  1  不同核函數的實驗結果

    Table  1.   Experimental results of various kernel functions

    AlgorithmACC_mean/%ACC_max/%MASEN/%MASPE/%F1_score/%MCC/%AUCAP
    Polynomial kernel + GAPSO90.0090.0085.1991.7882.1475.300.95840.8506
    Sigmoid kernel + GAPSO89.0089.0077.7893.1581.2674.350.94820.7990
    RBF kernel + GAPSO90.5091.0088.8991.7882.8576.390.94980.8022
    Exponential kernel + GAPSO90.4091.0092.5990.4183.7177.600.96040.8470
    Laplacian kernel + GAPSO90.6091.0092.5990.4184.1878.230.96550.8464
    MKL-SVM + PSO90.8092.0088.8993.1583.6877.440.96090.8726
    MKL-SVM + GA89.5090.0092.5989.0482.5075.930.96190.8830
    MKL-SVM + GAPSO91.1092.0088.8993.1584.3078.290.96500.8984
    下載: 導出CSV

    表  2  深度特征結合本文算法的實驗結果

    Table  2.   Results of the proposed algorithm combined with deep learning features

    AlgorithmACC_mean/%ACC_max/%MASEN/%MASPE/%F1_score/%MCC/%AUCAP
    Handcrafted features + MKL-SVM + GAPSO91.1092.0088.8993.1584.3078.290.96500.8984
    Deep learning features + MKL-SVM + GA88.0088.0081.8291.0481.8272.860.90380.8755
    Deep learning features + MKL-SVM + PSO89.8091.0075.7697.0182.5776.810.94840.9038
    Deep learning features + MKL-SVM + GAPSO
    (Proposed work)
    91.5094.0081.8210085.8180.690.95880.9043
    下載: 導出CSV

    表  3  所提算法與當前主流算法的性能比較

    Table  3.   Performance comparison of the proposed algorithm with current state-of-the-art methods

    ReferencesYearDatasetsMethodsACC/%SEN/%SPE/%AUC
    Zhao et al. [24]2019LIDC-IDRI (743 images)Transfer learning CNNs85.0094.000.94
    Masood et al. [25]2020LIDC-IDRI (892 images)Enhanced multidimensional region-based fully CNN97.9198.193.20.9813
    Mastouri et al. [14]2020LUNA16 (3186 images)Bilinear CNN + SVM91.9991.8592.270.959
    Proposed work2021LUNA16 (1140 images)Deep learning features+ Improved MKL-SVM95.2994.8595.890.9803
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Shen W, Zhou M, Yang F, et al. Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. Pattern Recognit, 2017, 61: 663 doi: 10.1016/j.patcog.2016.05.029
    [2] Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer, 2018, 103: 356 doi: 10.1016/j.ejca.2018.07.005
    [3] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018. CA:A Cancer J Clin, 2018, 68(1): 7 doi: 10.3322/caac.21442
    [4] Li Y, Zhu Z, Hou A, et al. Pulmonary nodule recognition based on multiple kernel learning support vector machine-PSO. Comput Math Methods Med, 2018, 2018: 1461470
    [5] Renita D B, Christopher C S. Novel real time content based medical image retrieval scheme with GWO-SVM. Multimed Tools Appl, 2020, 79(23-24): 17227 doi: 10.1007/s11042-019-07777-w
    [6] Jia D Y, Li Z Y, Zhang C W. Detection of cervical cancer cells based on strong feature CNN-SVM network. Neurocomputing, 2020, 411: 112 doi: 10.1016/j.neucom.2020.06.006
    [7] Shankar K, Lakshmanaprabu S K, Gupta D, et al. Optimal feature-based multi-kernel SVM approach for thyroid disease classification. J Supercomput, 2020, 76(2): 1128 doi: 10.1007/s11227-018-2469-4
    [8] Peng Z C, Hu Q H, Dang J W. Multi-kernel SVM based depression recognition using social media data. Int J Mach Learn Cybern, 2019, 10(1): 43 doi: 10.1007/s13042-017-0697-1
    [9] Valdez F. A review of optimization swarm intelligence-inspired algorithms with type-2 fuzzy logic parameter adaptation. Soft Comput, 2020, 24(1): 215 doi: 10.1007/s00500-019-04290-y
    [10] Zhou T, Lu H L, Hu F Y, et al. A model of high-dimensional feature reduction based on variable precision rough set and genetic algorithm in medical image. Math Probl Eng, 2020, 2020: 1
    [11] Gao Y K, Xie L B, Zhang Z D, et al. Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition. Appl Intell, 2020, 50(8): 2312 doi: 10.1007/s10489-020-01676-6
    [12] Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42: 60 doi: 10.1016/j.media.2017.07.005
    [13] Zhang B H, Qi S L, Monkam P, et al. Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images. IEEE Access, 2019, 7: 110358 doi: 10.1109/ACCESS.2019.2933670
    [14] Mastouri R, Khlifa N, Neji H, et al. A bilinear convolutional neural network for lung nodules classification on CT images. Int J Comput Assist Radiol Surg, 2021, 16(1): 91 doi: 10.1007/s11548-020-02283-z
    [15] ?zyurt F, Sert E, Avci E, et al. Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 2019, 147: 106830 doi: 10.1016/j.measurement.2019.07.058
    [16] Hao P Y. Dual possibilistic regression analysis using support vector networks. Fuzzy Sets Syst, 2020, 387: 1 doi: 10.1016/j.fss.2019.03.012
    [17] Yan B L, Zhao Z, Zhou Y C, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters. Comput Phys Commun, 2017, 219: 79 doi: 10.1016/j.cpc.2017.05.009
    [18] Wu Z, Zhang S, Wang T. A cooperative particle swarm optimization with constriction factor based on simulated annealing. Computing, 2018, 100(8): 861 doi: 10.1007/s00607-018-0625-6
    [19] Freitas D, Lopes L G, Morgado-Dias F. Particle swarm optimisation: A historical review up to the current developments. Entropy, 2020, 22(3): 362 doi: 10.3390/e22030362
    [20] Choudhary A, Kumar M, Gupta M K, et al. Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms. Neural Comput Appl, 2020, 32(10): 5761 doi: 10.1007/s00521-019-04404-5
    [21] Koessler E, Almomani A. Hybrid particle swarm optimization and pattern search algorithm. Optim Eng, 2020: 1
    [22] Setio A A A, Traverso A, Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal, 2017, 42: 1 doi: 10.1016/j.media.2017.06.015
    [23] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition//Proceedings of 2015 International Conference on Learning Representations. California, 2015: 1
    [24] Zhao X, Qi S, Zhang B, et al. Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning. J Xray Sci Technol, 2019, 27(4): 615
    [25] Masood A, Sheng B, Yang P, et al. Automated decision support system for lung cancer detection and classification via enhanced RFCN with multilayer fusion RPN. IEEE Trans Ind Inform, 2020, 16(12): 7791 doi: 10.1109/TII.2020.2972918
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  647
  • HTML全文瀏覽量:  245
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-14
  • 網絡出版日期:  2021-08-26
  • 刊出日期:  2021-09-18

目錄

    /

    返回文章
    返回