<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于一維卷積神經網絡的兒童睡眠分期

許力 吳云肖 肖冰 許志飛 張遠

許力, 吳云肖, 肖冰, 許志飛, 張遠. 基于一維卷積神經網絡的兒童睡眠分期[J]. 工程科學學報, 2021, 43(9): 1253-1260. doi: 10.13374/j.issn2095-9389.2021.01.13.011
引用本文: 許力, 吳云肖, 肖冰, 許志飛, 張遠. 基于一維卷積神經網絡的兒童睡眠分期[J]. 工程科學學報, 2021, 43(9): 1253-1260. doi: 10.13374/j.issn2095-9389.2021.01.13.011
XU Li, WU Yun-xiao, XIAO Bing, XU Zhi-fei, ZHANG Yuan. One-dimensional convolutional neural network for children’s sleep staging[J]. Chinese Journal of Engineering, 2021, 43(9): 1253-1260. doi: 10.13374/j.issn2095-9389.2021.01.13.011
Citation: XU Li, WU Yun-xiao, XIAO Bing, XU Zhi-fei, ZHANG Yuan. One-dimensional convolutional neural network for children’s sleep staging[J]. Chinese Journal of Engineering, 2021, 43(9): 1253-1260. doi: 10.13374/j.issn2095-9389.2021.01.13.011

基于一維卷積神經網絡的兒童睡眠分期

doi: 10.13374/j.issn2095-9389.2021.01.13.011
基金項目: 北京市自然科學基金資助項目(7212033);首都衛生發展科研專項資助項目(首發2018-4-6031)
詳細信息
    通訊作者:

    E-mail: yuanzhang@swu.edu.cn

  • 中圖分類號: TG391.7

One-dimensional convolutional neural network for children’s sleep staging

More Information
  • 摘要: 高質量睡眠與兒童的身體發育、認知功能、學習和注意力密切相關,由于兒童睡眠障礙的早期癥狀不明顯,需要進行長期監測,因此急需找到一種適用于兒童睡眠監測,且能夠提前預防和診斷此類疾病的方法。多導睡眠圖(Polysomnography,PSG)是臨床指南推薦的睡眠障礙基本檢測方法,通過觀察PSG各睡眠期間的變化和規律,對睡眠質量評估和睡眠障礙識別具有基礎作用。本文對兒童睡眠分期進行了研究,利用多導睡眠圖記錄的單通道腦電信號,在Alexnet的基礎上,用一維卷積代替二維卷積,提出一種1D-CNN結構,由5個卷積層、3個池化層和3個全連接層組成,并在1D-CNN中添加了批量歸一化層(Batch normalization layer),保持卷積核的大小保持不變。針對數據集少的情況,采用了重疊的方法對數據集進行了擴充。實驗結果表明,該模型兒童睡眠分期的準確率為84.3%。通過北京市兒童醫院的PSG數據獲得的歸一化混淆矩陣,可以看出,Wake、N2、N3和REM期睡眠的分類性能很好。對于N1期睡眠,存在將N1期睡眠被誤分類為Wake、N2和REM期睡眠的情況,因此以后的工作應重點提升N1期睡眠的準確性。總體而言,對于基于帶有睡眠階段標記的單通道EEG的自動睡眠分期,本文提出的1D-CNN模型可以實現針對于兒童的自動睡眠分期。在未來的工作中,仍需要研究開發更適合于兒童的睡眠分期策略,在更大數據量的基礎上進行實驗。

     

  • 圖  1  CNN的層次結構及應用

    Figure  1.  CNN architecture and applications

    圖  2  數據集重疊

    Figure  2.  Datasets overlapping

    圖  3  1D-CNN模型

    Figure  3.  1D-CNN model

    圖  4  睡眠分析系統原型

    Figure  4.  Prototype of the sleep analysis system

    圖  5  訓練和驗證準確率

    Figure  5.  Training and validation accuracy

    圖  6  訓練和驗證損失

    Figure  6.  Training and validation loss

    圖  7  混淆矩陣

    Figure  7.  Confusion matrix

    表  1  超參數表

    Table  1.   Model hyperparameters

    ParameterValue
    OptimizerAdam
    Learning rate0.00001
    Loss functionCross-entropy
    Batch size256
    L2 regularization0.001
    下載: 導出CSV

    表  2  實驗結果

    Table  2.   Experimental results

    MethodAccuracy / %PrecisionRecallF1-scoreK
    Our method85.570.8470.8660.8550.820
    DeepSleepNet69.580.6870.6590.6320.581
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Halbower A C, Degaonkar M, Barker P B, et al. Childhood obstructive sleep apnea associates with neuropsychological deficits and neuronal brain injury. PLoS Med, 2006, 3(8): e301 doi: 10.1371/journal.pmed.0030301
    [2] Matricciani L, Paquet C, Galland B, et al. Children's sleep and health: A meta-review. Sleep Med Rev, 2019, 46: 136 doi: 10.1016/j.smrv.2019.04.011
    [3] Cardoso T S G, Pompéia S, Miranda M C. Cognitive and behavioral effects of obstructive sleep apnea syndrome in children: A systematic literature review. Sleep Med, 2018, 46: 46 doi: 10.1016/j.sleep.2017.12.020
    [4] Marcus C L, Moore R H, Rosen C L, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med, 2013, 368(25): 2366 doi: 10.1056/NEJMoa1215881
    [5] Tabone L, Khirani S, Amaddeo A, et al. Cerebral oxygenation in children with sleep-disordered breathing. Paediatr Respir Rev, 2020, 34: 18
    [6] Rundo J V, Downey III R. Polysomnography. Handb Clin Neurol, 2019, 160: 381
    [7] Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Washington, DC: U.S. Government Printing Office, 1968
    [8] Li Y J, Hong F, Yan H, et al. Research progress in sleep quality evaluation on-orbit. Space Med Med Eng, 2012, 25(6): 458

    李延軍, 宏峰, 嚴洪, 等. 在軌睡眠質量評價的研究進展. 航天醫學與醫學工程, 2012, 25(6):458
    [9] Singh J, Badr M S, Diebert W, et al. American academy of sleep medicine (AASM) position paper for the use of telemedicine for the diagnosis and treatment of sleep disorders. J Clin Sleep Med, 2015, 11(10): 1187 doi: 10.5664/jcsm.5098
    [10] Newson J J, Thiagarajan T C. EEG frequency bands in psychiatric disorders: A review of resting state studies. Front Hum Neurosci, 2018, 12: 521 doi: 10.3389/fnins.2018.00521
    [11] Berry RB, Albertario CL, Harding SM, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications (Version 2.5). USA: American Academy of Sleep Medicine, 2018
    [12] Dong H, Supratak A, Pan W, et al. Mixed neural network approach for temporal sleep stage classification. IEEE Trans Neural Syst Rehabilitation Eng, 2018, 26(2): 324 doi: 10.1109/TNSRE.2017.2733220
    [13] Supratak A, Dong H, Wu C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabilitation Eng, 2017, 25(11): 1998 doi: 10.1109/TNSRE.2017.2721116
    [14] Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Trans Neural Syst Rehabilitation Eng, 2019, 27(3): 400 doi: 10.1109/TNSRE.2019.2896659
    [15] Mousavi S, Afghah F, Acharya U R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One, 2019, 14(5): e0216456 doi: 10.1371/journal.pone.0216456
    [16] Neng W P, Lu J, Xu L. CCRRSleepNet: A hybrid relational inductive biases network for automatic sleep stage classification on raw single-channel EEG. Brain Sci, 2021, 11(4): 456 doi: 10.3390/brainsci11040456
    [17] Dehkordi P, Garde A, Karlen W, et al. Sleep stage classification in children using photoplethysmogram pulse rate variability // Computing in Cardiology 2014. Cambridge, 2014: 297
    [18] Gu J X, Wang Z H, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognit, 2018, 77: 354 doi: 10.1016/j.patcog.2017.10.013
    [19] Feyissa AM, Tatum WO. Adult EEG. Handb Clin Neurol, 2019, 160: 103
    [20] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks //NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, 2012: 1097
    [21] Kalayeh M M, Shah M. Training faster by separating modes of variation in batch-normalized models. IEEE Trans Pattern Anal Mach Intell, 2020, 42(6): 1483 doi: 10.1109/TPAMI.2019.2895781
    [22] He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1026
    [23] Kingma D P, Ba J. Adam: A method for stochastic optimization // International Conference on Learning Representations. San Diego, 2015: 13
    [24] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15: 1929
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數:  575
  • HTML全文瀏覽量:  414
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-13
  • 網絡出版日期:  2021-08-26
  • 刊出日期:  2021-09-18

目錄

    /

    返回文章
    返回