-
摘要: 針對傳統醫療手段無法有效量化評估手術中不同硅油加注量對于視網膜裂孔貼附效果的問題,本文提出一種面向視網膜脫離手術的硅油填充模擬方法,基于物理建模與計算機數值離散化技術對眼內受力、硅油填充狀態進行分析,并對填充模擬過程進行三維模型構建與可視化,實現醫療過程決策輔助目的。首先對人類眼球與手術器具進行基礎建模與模型采樣,模擬手術流程中眼球狀態;然后,根據水與硅油的密度、黏滯系數、表面張力等不同物理性質,對水?硅油兩相流動及交互進行模擬;最后,構建固液交互模型,實現多相液體在眼球中的運動與填充。實驗結果表明,本文方法能夠較好地呈現眼球內多相流體運動交互效果,實現了諸如表面張力、固液耦合、液體分層、連通器效應等效果,實現了對眼內腔中通過導管注入硅油與排出水分流程的模擬,為預測硅油填充后的眼內狀態提供了一種有效的方式,輔助醫生進行手術流程規劃與效果預測。Abstract: With advancements in modern medical technology, the treatment of rhegmatogenous retinal detachment has been receiving increasing attention. Globally, vitrectomy combined with intraocular silicone oil tamponade has been widely used for rhegmatogenous retinal detachment, and the surgical equipment and technology required are increasingly advanced. In such an operation, it is crucial to understand how to achieve the best therapeutic effect with the minimum amount of silicone oil tamponade so as to reduce surgical complications. Traditional medical methods cannot effectively evaluate the effect of different silicone oil dosages on retinal hole attachment. Aiming at this concern, the current study proposed a silicone oil tamponade simulation method for retinal detachment surgery. Based on physical modeling and computer numerical discretization techniques, the intraocular force and silicone oil filling state were analyzed. Three-dimensional modeling and simulation of the silicone tamponade process were then conducted and visualized to help with medical decision-making. First, the human eyeball and surgical instruments were modeled and sampled to simulate the eyeball state during the operation. Second, based on differences in density, viscosity coefficient, and surface tension between water and silicone oil, the two-phase flow and water?silicone oil interaction were simulated. Finally, the solid?liquid interaction model was constructed to assess the movement and injection process of multiphase liquid in the eyeball. The experimental results show that this method can well present the interaction effect of multiphase fluid movement in the eyeball; understand effects such as surface tension, solid–liquid coupling, liquid stratification, and connector effect; and realize the simulation of the silicone oil injection and water drainage processes through the catheter in the intraocular cavity, which provides an effective way to predict the intraocular state after silicone oil filling and assists doctors in the field of operation process planning and effect prediction.
-
圖 7 不同張力系數下的水塊沖擊表現結果。(a~d)第22幀時
$\alpha = 0,\;0.1,\;0.5,\;0.8$ 的效果;(e~h)第69幀時$\alpha = 0,\;0.1,\;0.5,\;0.8$ 的效果;(i~l)第503幀時(靜止后)$\alpha = 0,\;0.1,\;0.5,\;0.8$ 的效果Figure 7. Impact performance of water blocks with different tension coefficients: (a–d) effect at frame 22 when
$\alpha = 0,\;0.1,\;0.5,\;0.8$ ; (e–h) effect at frame 69 when$\alpha = 0,\;0.1,\;0.5,\;0.8$ ; (i–l) effect at frame 503 (after rest) when$\alpha = 0,\;0.1,\;0.5,\;0.8$ 圖 9 眼球內兩相液體交互。(a~c)第266幀兩相均無表面張力、只有硅油具有表面張力、兩相均有表面張力時的交互情況;(d~f)第376幀兩相均無表面張力、只有硅油具有表面張力、兩相均有表面張力時的交互情況
Figure 9. Two-phase liquid interaction in the eyeball: (a–c) interaction effect of the two phases without surface tension, only the surface tension of silicone oil, and the surface tension of both phases in frame 266; (d–f) interaction effect of the two phases without surface tension, only the surface tension of silicone oil, and the surface tension of both phases in frame 376
www.77susu.com -
參考文獻
[1] Liao L, Zhu X H. Advances in the treatment of rhegmatogenous retinal detachment. Int J Ophthalmol, 2019, 12(4): 660 [2] Kawaguchi M. Silicone oil emulsions stabilized by polymers and solid particles. Adv Colloid Interface Sci, 2016, 233: 186 doi: 10.1016/j.cis.2015.06.005 [3] Moussa K, Leng T, Oatts J T, et al. Manual removal of intraocular lens silicone oil droplets and dystrophic calcifications using a nitinol loop: A case series. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(5): 422 doi: 10.3928/23258160-20170428-09 [4] Barca F, Caporossi T, Rizzo S. Silicone oil: Different physical proprieties and clinical applications. Biomed Res Int, 2014, 2014: 502143 [5] Scott M N, Weng C Y. The evolution of pars plana vitrectomy to 27-G microincision vitrectomy surgery. Int Ophthalmol Clin, 2016, 56(4): 97 doi: 10.1097/IIO.0000000000000131 [6] Kuhn F, Aylward B. Rhegmatogenous retinal detachment: A reappraisal of its pathophysiology and treatment. Ophthalmic Res, 2014, 51(1): 15 doi: 10.1159/000355077 [7] Guan Y B, Chen W, Xie S Y. Characteristics of macular optical coherence tomography changes before and after silicone oil removal in patients with rhegmatogenous retinal detachment involving the macular area. Chin J Ocul Fundus Dis, 2016(3): 291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015關禹博, 陳偉, 謝世勇. 累及黃斑的孔源性視網膜脫離硅油取出手術前后黃斑區光相干斷層掃描圖像特征分析. 中華眼底病雜志, 2016(3):291 doi: 10.3760/cma.j.issn.1005-1015.2016.03.015 [8] Li M, Zhao X, Lan Q Q, et al. Clinical research of complicated retinal detachment with inferior breaks using a heavy silicon oil as temporary tamponade. J Clin Ophthalmol, 2010, 18(5): 404 doi: 10.3969/j.issn.1006-8422.2010.05.007李敏, 趙昕, 藍倩倩, 等. 重硅油填充治療下方裂孔源性視網膜脫離的臨床研究. 臨床眼科雜志, 2010, 18(5):404 doi: 10.3969/j.issn.1006-8422.2010.05.007 [9] Odrobina D, Go??biewska J, Maroszyńska I. Choroidal thickness changes after vitrectomy with silicone oil tamponade for proliferative vitreoretinopathy retinal detachment. Retina (Phila Pa) , 2017, 37(11): 2124 doi: 10.1097/IAE.0000000000001437 [10] Roca J A, Wu L, Berrocal M, et al. Un-explained visual loss following silicone oil removal: results of the Pan American Collaborative Retina Study (PACORES) Group. Int J Retina Vitreous, 2017, 3: 26 doi: 10.1186/s40942-017-0079-6 [11] Tong H J, Fu D M. Retinal feature quantization method based on a reference model. Chin J Eng, 2019, 41(9): 1222童何俊, 付冬梅. 基于參考模型的視網膜特征量化. 工程科學學報, 2019, 41(9):1222 [12] Ma B Y, Jiang S F, Yin D, et al. Image segmentation metric and its application in the analysis of microscopic image. Chin J Eng, 2021, 43(1): 137馬博淵, 姜淑芳, 尹豆, 等. 圖像分割評估方法在顯微圖像分析中的應用. 工程科學學報, 2021, 43(1):137 [13] Desbrun M, Gascuel M P. Smoothed particles: A new paradigm for animating highly deformable bodies. Comput Animat Simul ’96, 1996: 61 [14] Becker M, Teschner M. Weakly compressible SPH for free surface flows//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, San Diego, 2007: 209 [15] Solenthaler B, Pajarola R. Predictive-corrective incompressible SPH. ACM Trans Graph, 2009, 28(3): 1 [16] Ihmsen M, Cornelis J, Solenthaler B, et al. Implicit incompressible SPH. IEEE Trans Vis Comput Graph, 2014, 20(3): 426 doi: 10.1109/TVCG.2013.105 [17] Monaghan J J, Kajtar J B. SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun, 2009, 180(10): 1811 doi: 10.1016/j.cpc.2009.05.008 [18] Becker M, Tessendorf H, Teschner M. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans Vis Comput Graph, 2009, 15(3): 493 doi: 10.1109/TVCG.2008.107 [19] Harada T, Koshizuka S, Kawaguchi Y. Smoothed Particle Hydrodynamics on GPUs. Structure, 2007, 4(4): 671 [20] Akinci N, Ihmsen M, Akinci G, et al. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph, 2012, 31(4): 1 [21] Macklin M, Müller M, Chentanez N, et al. Unified particle physics for real-time applications. ACM Trans Graph, 2014, 33(4): 1 [22] Müller M, Solenthaler B, Keiser R, et al. Particle-based fluid-fluid interaction//Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, 2005: 237 [23] Ren B, Li C F, Yan X, et al. Multiple-fluid SPH simulation using a mixture model. ACM Trans Graph, 2014, 33(5): 1 [24] Yan X, Jiang Y T, Li C F, et al. Multiphase SPH simulation for interactive fluids and solids. ACM Trans Graph, 2016, 35(4): 1 [25] Lin W C. Boundary handling and porous flow for fluid-hair interactions. Comput Graph, 2015, 52: 33 doi: 10.1016/j.cag.2015.06.005 [26] Nielsen M B, ?sterby O. A two-continua approach to Eulerian simulation of water spray. ACM Trans Graph, 2013, 32(4): 1 [27] Wang X K, Ban X J, Liu S N, et al. Small-scale surface details simulation using divergence-free SPH. J Vis Lang Comput, 2018, 48: 91 doi: 10.1016/j.jvlc.2018.07.005 [28] Koschier D, Bender J, Solenthaler B, et al. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids[J/OL]. arXiv preprint (2020-9-15) [2021-6-23]. https://arxiv.org/abs/2009.06944. [29] Solenthaler B, Pajarola R. Density contrast SPH interfaces//Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville, Switzerland: Eurographics Association, 2008: 211 [30] Akinci N, Akinci G, Teschner M. Versatile surface tension and adhesion for SPH fluids. ACM Trans Graph, 2013, 32(6): 1 -