<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于ECG信號的高精度血糖監測

李婷 葉松 李景振 馬菁菁 陸瑤芃 洪培濤 聶澤東

李婷, 葉松, 李景振, 馬菁菁, 陸瑤芃, 洪培濤, 聶澤東. 基于ECG信號的高精度血糖監測[J]. 工程科學學報, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009
引用本文: 李婷, 葉松, 李景振, 馬菁菁, 陸瑤芃, 洪培濤, 聶澤東. 基于ECG信號的高精度血糖監測[J]. 工程科學學報, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009
LI Ting, YE Song, LI Jing-zhen, MA Jing-jing, LU Yao-peng, HONG Pei-tao, NIE Ze-dong. High accuracy blood glucose monitoring based on ECG signals[J]. Chinese Journal of Engineering, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009
Citation: LI Ting, YE Song, LI Jing-zhen, MA Jing-jing, LU Yao-peng, HONG Pei-tao, NIE Ze-dong. High accuracy blood glucose monitoring based on ECG signals[J]. Chinese Journal of Engineering, 2021, 43(9): 1215-1223. doi: 10.13374/j.issn2095-9389.2021.01.12.009

基于ECG信號的高精度血糖監測

doi: 10.13374/j.issn2095-9389.2021.01.12.009
基金項目: 國家重點研發計劃資助項目(2018YFC2001002);深圳市基礎研究資助項目(JCYJ20180507182231907)
詳細信息
    通訊作者:

    E-mail:zd.nie@siat.ac.cn

  • 中圖分類號: R587.1;TN911.7

High accuracy blood glucose monitoring based on ECG signals

More Information
  • 摘要: 連續血糖監測在糖尿病管理中具有重要的意義。目前糖尿病患者主要通過指尖采血或植入式微創傳感器監測血糖,但上述方法存在疼痛、成本昂貴、易感染等問題,因此,無創監測是實現連續血糖監測的理想技術。本文利用心電(ECG)信號,提出了一種血糖水平無創監測的方法:通過獲取12名志愿者共60 d 756160個ECG周期信號,利用遞歸濾波器實現ECG信號的濾波,并采用卷積神經網絡和長短期記憶網絡相結合(CNN-LSTM)的方法,實現了血糖水平的十分類監測,并通過實驗探索了個體建模和群體建模2種建模方式的差異。結果表明,在個體建模和群體建模的條件下,血糖監測精確率分別約達到80%和88%。其中群體建模10分類的F1值可達到0.95、0.88、0.91、0.85、0.92、0.88、0.86、0.86、0.87和0.86。研究表明,本文提出的基于ECG的無創血糖監測方法為實現血糖水平的實時、精準監測提供了一種有力的理論支撐與技術指導。

     

  • 圖  1  ECG數據采集實驗圖

    Figure  1.  ECG data acquiring experiment

    圖  2  一個ECG信號周期示意圖

    Figure  2.  ECG signal cycle diagram

    圖  3  ECG信號濾波前后圖像。(a)未濾波的ECG信號;(b)IIR濾波器去噪后的ECG信號

    Figure  3.  Images of ECG signals before and after filtering: (a) unfiltered ECG signal; (b) ECG signal followed by IIR filter

    圖  4  不同志愿者在相同血糖水平下的一個ECG信號周期波形示例。(a)BG=5.9 mmol?L?1;(b)BG=8.1 mmol?L?1;(c)BG=10.5 mmol?L?1

    Figure  4.  ECG signal cycle waveforms at the same BG level for different subjects: (a) BG = 5.9 mmol?L?1; (b) BG = 8.1 mmol?L?1; (c) BG = 10.5 mmol?L?1

    表  1  12名志愿者信息分布(人數)

    Table  1.   Quantity of volunteers with different body information

    GenderAge bracketBMI
    MaleFemale≤24(24,40)≥40<18.5 (Low weight)[18.5,23) (Normal weight)≥23 (Overweight)
    57453363
    下載: 導出CSV

    表  2  群體建模血糖分類標簽及數據量

    Table  2.   Blood glucose classification labels and data volumes upon group modeling

    Blood glucose classification/(mmol?L?1)LabelsData
    SizeRation/%
    ≤5.607016410.1
    >5.6 and ≤6.217542410.9
    >6.2 and ≤6.62667659.6
    >6.6 and ≤7.237524710.8
    >7.2 and ≤7.84663469.5
    >7.8 and ≤8.45612728.9
    >8.4 and ≤9.16688239.9
    >9.1 and ≤10.47684649.9
    >10.4 and ≤14.98662929.5
    >14.997561610.9
    下載: 導出CSV

    表  3  CNN?LSTM模型參數設置

    Table  3.   Parameter setting of the CNN?LSTM model

    LayersTypeNeuronsFiltersKernel-sizeStridesPaddingPool-size
    1Conv1d(1,1,700)8310
    2BatchNorm1d(8,1, 698)
    3ReLU(8,1, 698)
    4MaxPool1d(8,1, 698)02
    5Conv1d(8,1, 348)16510
    6BatchNorm1d(16,1, 344)
    7ReLU(16,1, 344)
    8MaxPool1d(16,1, 344)02
    9Conv1d(16,1, 172)32810
    10BatchNorm1d(32,1, 165)
    11ReLU(32,1, 165)
    12MaxPool1d(32,1,165)02
    13Conv1d(32,1, 83)128210?
    14BatchNorm1d(128,1, 82)
    15ReLU(128,1, 82)
    16LSTM(128,1, 82)128
    17Fully-connected(1,128)
    18Fully-connected(1, 64)
    19Output10
    下載: 導出CSV

    表  4  A1、A2、B1和B2分別進行個體建模性能評估

    Table  4.   Individual modeling performance evaluations for A1, A2, B1, and B2

    VolunteerPrecisionRecallF1-score
    A10.790.790.79
    A20.800.800.80
    B10.810.790.79
    B20.860.860.86
    下載: 導出CSV

    表  5  群體建模下的血糖監測混淆矩陣

    Table  5.   Confusion matrix for blood glucose prediction under group modeling

    LabelsPredict 0Predict 1Predict 2Predict 3Predict 4Predict 5Predict 6Predict 7Predict 8Predict 9
    0108345910000000
    13710213529000000
    2935109331010000
    31090989263400000
    40002011194712112
    5001065945772840
    60000341010992450
    7000020199668771
    8000020643982105
    90000510243271051
    下載: 導出CSV

    表  6  血糖監測模型性能評估

    Table  6.   Performance evaluation of the proposed glucose prediction model

    LabelsPrecisionRecallF1-score
    00.950.940.95
    10.860.910.88
    20.880.930.91
    30.910.800.85
    40.910.930.92
    50.940.830.88
    60.880.850.86
    70.870.840.86
    80.870.860.87
    90.800.940.86
    下載: 導出CSV

    表  7  血糖監測模型對比

    Table  7.   Comparison of glucose prediction models

    Related workClassificationUsing signalsModeling methodModelPrecision/%
    Literature[16]6ECG+PPGIndividual modelingELM83.5
    CNN81.2
    Fractional order system77.3
    This paper10ECGIndividual modelingCNN?LSTM81.5
    Group modelingCNN?LSTM88.4
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wan X S. Review of the risk factors and intervention of type 2 diabetes. Chin J Soc Med, 2006, 23(4): 251 doi: 10.3969/j.issn.1673-5625.2006.04.019

    萬曉珊. 2型糖尿病的危險因素及干預綜述. 中國社會醫學雜志, 2006, 23(4):251 doi: 10.3969/j.issn.1673-5625.2006.04.019
    [2] Zheng C Z, Ding D. Guiding opinions of Chinese diabetes surgery experts (2010). Chin J Pract Surg, 2011, 31(1): 54

    鄭成竹, 丁丹. 中國糖尿病外科治療專家指導意見(2010). 中國實用外科雜志, 2011, 31(1):54
    [3] Hou Q T, Li Y, Li S Y, et al. The global burden of diabetes mellitus. Chin J Diabetes, 2016, 24(1): 92 doi: 10.3969/j.issn.1006-6187.2016.01.023

    侯清濤, 李蕓, 李舍予, 等. 全球糖尿病疾病負擔現狀. 中國糖尿病雜志, 2016, 24(1):92 doi: 10.3969/j.issn.1006-6187.2016.01.023
    [4] Zheng Z J. Application of Continuous Glucose Monitoring System in Critical Illness: A Preliminary Study [Dissertation]. Hangzhou: Zhejiang University, 2016

    鄭忠駿. 連續血糖監測系統在危重患者中應用的初步研究[學位論文]. 杭州: 浙江大學, 2016.
    [5] Wei Z, Zhang B X, Shi H B, et al. The development of noninvasive detection technique of blood glucose. China Med Equip, 2020, 17(12): 196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046

    韋哲, 張秉璽, 石恒兵, 等. 無創血糖檢測技術的發展. 中國醫學裝備, 2020, 17(12):196 doi: 10.3969/J.ISSN.1672-8270.2020.12.046
    [6] Wang L P. Study on Approach of ECG Classification with Domain Knowledge [Dissertation]. Shanghai: East China Normal University, 2013

    王麗蘋. 融合領域知識的心電圖分類方法研究[學位論文]. 上海: 華東師范大學, 2013.
    [7] Liu C Y, Yang M C, Di J N, et al. Wearable ECG: History, key technologies and future challenges. Chin J Biomed Eng, 2019, 38(6): 641 doi: 10.3969/j.issn.0258-8021.2019.06.001

    劉澄玉, 楊美程, 邸佳楠, 等. 穿戴式心電: 發展歷程、核心技術與未來挑戰. 中國生物醫學工程學報, 2019, 38(6):641 doi: 10.3969/j.issn.0258-8021.2019.06.001
    [8] Wang J H. What are the hazards of hyperglycemia and hypoglycemia. Prevent treat cardiovasc, 2016(4): 19

    王建華. 高血糖、低血糖各有哪些危害. 心血管病防治知識, 2016(4):19
    [9] Acharya U R, Fujita H, Lih O S, et al. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl Based Syst, 2017, 132: 62 doi: 10.1016/j.knosys.2017.06.003
    [10] Pfeifer M A, Cook D, Brodsky J, et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes, 1982, 31(4pt1): 339
    [11] Porumb M, Stranges S, Pescapè A, et al. Precision medicine and artificial intelligence: A pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep, 2020, 10: 170 doi: 10.1038/s41598-019-56927-5
    [12] Jin X F, Liu C H, Xu T L, et al. Artificial intelligence biosensors: Challenges and prospects. Biosens Bioelectron, 2020, 165: 112412 doi: 10.1016/j.bios.2020.112412
    [13] Tobore I, Kandwal A, Li J Z, et al. Towards adequate prediction of prediabetes using spatiotemporal ECG and EEG feature analysis and weight-based multi-model approach. Knowl Based Syst, 2020, 209: 106464 doi: 10.1016/j.knosys.2020.106464
    [14] Kandhasamy J P, Balamurali S. Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci, 2015, 47: 45 doi: 10.1016/j.procs.2015.03.182
    [15] Tafa Z, Pervetica N, Karahoda B. An intelligent system for diabetes prediction//2015 4th Mediterranean Conference on Embedded Computing (MECO). Budva, 2015: 378
    [16] Liu Y W. Research on Non-Invasive Blood Glucose Detection Based on PPG and ECG Fusion Signal [Dissertation]. Guangzhou: Guangdong University of Technology, 2018

    劉宇巍. 基于PPG和ECG信號融合的無創血糖檢測方法研究[學位論文]. 廣州: 廣東工業大學, 2018.
    [17] Feng P H. Research on Blood Glucose Estimation Based on Signal Processing Technology [Dissertation]. Guangzhou: Guangdong University of Technology, 2019

    馮培華. 基于信號處理技術的無創血糖估計研究[學位論文]. 廣州: 廣東工業大學, 2019.
    [18] Tobore I, Li J, Yuhang L, et al. Deep learning intervention for health care challenges: Some biomedical domain considerations. JMIR Mhealth Uhealth, 2019, 7(8): e11966 doi: 10.2196/11966
    [19] Tobore I, Li J, Kandwal A, et al. Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Med Inform Decis Mak, 2019, 19(Suppl6): 266
    [20] Chen W, Xie X S, Wang J L, et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA, 2017, 151: 147 doi: 10.1016/j.catena.2016.11.032
    [21] Yang H B, Wu X W, Yuan R, et al. Establishment and verification of the prediction model and nomogram for type 2 diabetes blood glucose control [J/OL]. J Chengdu Med College (2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.

    楊恒博, 吳行偉, 袁蓉, 等. 2型糖尿病血糖控制預測模型及列線圖的建立與驗證[J/OL]. 成都醫學院學報(2020-7-22) [2020-12-30]. http://kns.cnki.net/kcms/detail/51.1705.R.20200722.1640.004.html.
    [22] Teng J L, Rong Z J, Xu Y, et al. Blood glucose prediction method based on gru. Comput Appl Softw, 2020, 37(10): 107 doi: 10.3969/j.issn.1000-386x.2020.10.017

    滕建麗, 容芷君, 許瑩, 等. 基于GRU網絡的血糖預測方法研究. 計算機應用與軟件, 2020, 37(10):107 doi: 10.3969/j.issn.1000-386x.2020.10.017
    [23] Seyd A P T, Joseph P K, Jacob J. Automated diagnosis of diabetes using heart rate variability signals. J Med Syst, 2012, 36(3): 1935 doi: 10.1007/s10916-011-9653-x
    [24] Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci, 2017, 415-416: 190 doi: 10.1016/j.ins.2017.06.027
    [25] Ashiquzzaman A, Tushar A K, Islam M R, et al. Reduction of overfitting in diabetes prediction using deep learning neural network//IT Convergence and Security 2017. Singapore, 2017: 35
    [26] Swapna G, Acharya R U, Vinithasree S, et al. Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intell Data Anal, 2013, 17(2): 309 doi: 10.3233/IDA-130580
    [27] Porumb M, Griffen C, Hattersley J, et al. Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomed Signal Process Control, 2020, 62: 102054 doi: 10.1016/j.bspc.2020.102054
    [28] Yannakoulia M, Lykou A, Kastorini C M, et al. Socio-economic and lifestyle parameters associated with diet quality of children and adolescents using classification and regression tree analysis: The DIATROFI study. Public Health Nutr, 2016, 19(2): 339 doi: 10.1017/S136898001500110X
    [29] Yuan C X, Jia D N, Zhou S H. Research and application of convolutional neural network in mining area prediction. Chin J Eng, 2020, 42(12): 1597

    袁傳新, 賈東寧, 周生輝. 卷積神經網絡在礦區預測中的研究與應用. 工程科學學報, 2020, 42(12):1597
  • 加載中
圖(4) / 表(7)
計量
  • 文章訪問數:  1440
  • HTML全文瀏覽量:  757
  • PDF下載量:  153
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-12
  • 網絡出版日期:  2021-08-30
  • 刊出日期:  2021-09-18

目錄

    /

    返回文章
    返回