<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬礦尾砂濃密技術研究現狀與展望

王洪江 彭青松 楊瑩 郭佳賓

王洪江, 彭青松, 楊瑩, 郭佳賓. 金屬礦尾砂濃密技術研究現狀與展望[J]. 工程科學學報, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001
引用本文: 王洪江, 彭青松, 楊瑩, 郭佳賓. 金屬礦尾砂濃密技術研究現狀與展望[J]. 工程科學學報, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001
WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001
Citation: WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering, 2022, 44(6): 971-980. doi: 10.13374/j.issn2095-9389.2021.01.11.001

金屬礦尾砂濃密技術研究現狀與展望

doi: 10.13374/j.issn2095-9389.2021.01.11.001
基金項目: 國家自然科學基金重點資助項目(51834001);中國博士后科學基金資助項目(2021M701516)
詳細信息
    通訊作者:

    E-mail: monicayang1129@hotmail.com

  • 中圖分類號: TD853

Research status and prospect of thickening technology for metal tailings

More Information
  • 摘要: 作為金屬礦山膏體充填技術的首要環節,尾砂濃密技術能夠顯著提高尾砂脫水效率和尾砂利用率,是礦山綠色發展的重要組成部分。在概述了尾砂濃密脫水技術發展歷程的基礎上,將濃密機發展階段分為普通濃密機階段、高效濃密機階段和膏體濃密機階段,闡述了尾砂濃密工藝的應用現狀和國內外幾個典型的應用案例。介紹了對尾砂起捕捉作用的單一絮凝理論和多重絮凝理論,靜態/動態壓縮條件下的床層壓縮理論與重力濃密理論,并闡述了各理論的最新研究進展。闡述了現階段尾砂濃密靜態沉降實驗、小型濃密實驗和半工業濃密實驗等主要研究方法,介紹了聚焦光束反射測量技術、顆粒錄影顯微鏡技術等先進的觀測手段和尾砂濃密技術數值模擬研究現狀。現階段,尾砂濃密脫水技術仍處于發展階段,存在尾砂濃密的關鍵參數不穩定、尾砂濃密的生產調控不及時和尾砂濃密的信息平臺不健全等問題,尾砂濃密技術的發展仍面臨諸多挑戰。最后提出了尾砂濃密技術個性化、自動化和智能化的發展方向。

     

  • 圖  1  某顆粒物料靜態沉降導水通道與火山口現象

    Figure  1.  Water channel and the volcanic phenomenon of static sedimentation of a granular material

    圖  2  Coe?Clevenger固體通量曲線

    Figure  2.  Coe?Clevenger solid flux curve

    圖  3  Kynch沉降理論圖解

    Figure  3.  Illustration of Kynch settlement theory

    圖  4  C?C理論與B?W理論合并曲線

    Figure  4.  Combination curves of C?C and B?W theories

    圖  5  尾砂濃密物理實驗裝置。(a)靜態沉降實驗;(b)小型濃密實驗;(c)半工業濃密實驗

    Figure  5.  Physical experimental device for tailings thickening: (a) static settlement experiment; (b) small dense experiment; (c) semi-industrial dense experiment

    圖  6  濃密過程顆粒的沉降運動和凝聚行為

    Figure  6.  Settling motion and agglomeration behavior of particles in the thickening process

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    程海勇. 時—溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018
    [2] Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    李公成. 全尾砂絮團尺寸變化及其濃密性能研究[學位論文]. 北京: 北京科技大學, 2019
    [3] Ma C X, Qin H L. On the dam stability of the tailing pond based on the analysis on the seepage stability. Ind Saf Environ Prot, 2008, 34(9): 32 doi: 10.3969/j.issn.1001-425X.2008.09.014

    馬池香, 秦華禮. 基于滲透穩定性分析的尾礦庫壩體穩定性研究. 工業安全與環保, 2008, 34(9):32 doi: 10.3969/j.issn.1001-425X.2008.09.014
    [4] Jiangsu, Lu H, Cao R X, et al. Pollution evaluation of heavy metal in soils of an iron mine's tailing reservoir and its surrounding region. Environ Sci Technol, 2014, 37(Suppl 1): 274

    姜素, 陸華, 曹瑞祥, 等. 某鐵礦尾礦庫及周邊土壤重金屬污染評價. 環境科學與技術, 2014, 37(增刊1): 274
    [5] Wang X L, Yao W X, Wang H, et al. The directions of R & D on backfill with waste rock and total tailings in underground mine. China Min Mag, 2011, 20(9): 76 doi: 10.3969/j.issn.1004-4051.2011.09.020

    王賢來, 姚維信, 王虎, 等. 礦山廢石全尾砂充填研究現狀與發展趨勢. 中國礦業, 2011, 20(9):76 doi: 10.3969/j.issn.1004-4051.2011.09.020
    [6] Concha F, Bürger R. Thickening in the 20th century: A historical perspective. Min Metall Explor, 2003, 20(2): 57
    [7] Concha F, Bürger R. A century of research in sedimentation and thickening. KONA Powder Part J, 2002, 20: 38 doi: 10.14356/kona.2002009
    [8] Zhan H H, Luo Y W. Research on flocculation setting of high density fine particle coal slurry. Coal Sci Technol, 2007, 35(2): 76 doi: 10.3969/j.issn.0253-2336.2007.02.023

    湛含輝, 羅彥偉. 高濃度細粒煤泥水的絮凝沉降研究. 煤炭科學技術, 2007, 35(2):76 doi: 10.3969/j.issn.0253-2336.2007.02.023
    [9] Chen S W, Tong K W, Ma Z S, et al. High efficiency thickener—Current status and application prospects. Met Mine Des Constr, 1997(1): 48

    陳述文, 馬振聲. 高效濃密機的應用現狀及前景. 冶金礦山設計與建設, 1997(1):48
    [10] Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276

    阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, 2021, 43(10):1276
    [11] Zhou X, Ruan Z E, Wu A X, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM. Chin J Eng, 2021, 43(11): 1425

    周旭, 阮竹恩, 吳愛祥, 等. 基于FBRM和PVM技術的尾礦濃密過程絮團演化規律. 工程科學學報, 2021, 43(11):1425
    [12] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
    [13] Chen H J, He Y M, Luan J L, et al. Comparison of tailings stacking technologies and their applications. Yunnan Metall, 2012, 41(4): 68 doi: 10.3969/j.issn.1006-0308.2012.04.018

    陳華君, 何艷明, 欒景麗, 等. 尾礦堆存處理工藝比較及應用. 云南冶金, 2012, 41(4):68 doi: 10.3969/j.issn.1006-0308.2012.04.018
    [14] Guo L J, Yu B. Status and future of filling technology and equipment in metal mines in China. Min Technol, 2011, 11(3): 12 doi: 10.3969/j.issn.1671-2900.2011.03.004

    郭利杰, 余斌. 中國金屬礦山充填技術與裝備的現狀和未來. 采礦技術, 2011, 11(3):12 doi: 10.3969/j.issn.1671-2900.2011.03.004
    [15] Li S L, Du Y Y. Application of paste technology in tailings stacking of dishui chalcopyrite of Xinjiang. Nonferrous Met Eng, 2016, 6(4): 73 doi: 10.3969/j.issn.2095-1744.2016.04.018

    李仕亮, 杜玉艷. 膏體技術在新疆滴水銅礦尾礦堆存中的應用. 有色金屬工程, 2016, 6(4):73 doi: 10.3969/j.issn.2095-1744.2016.04.018
    [16] McMahon J. Optimizing tailings disposal and water recovery. Pollut Eng, 2014, 46(8): 20
    [17] Gu C H. Research progress in coagulation mechanism of organic macro-molecular coagulants. J Chongqing Technol Bus Univ Nat Sci, 2007, 24(6): 573

    古昌紅. 有機高分子絮凝劑絮凝機理的研究進展. 重慶工商大學學報(自然科學版), 2007, 24(6):573
    [18] Chang Q. Flocculation of Water Treatment. Beijing: Chemical Industry Press, 2003

    常青. 水處理絮凝學. 北京: 化學工業出版社, 2003
    [19] Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
    [20] Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Adv Environ Res, 2001, 5(2): 129 doi: 10.1016/S1093-0191(00)00049-6
    [21] Petzold G, Mende M, Lunkwitz K, et al. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids Surfaces A Physicochem Eng Aspects, 2003, 218(1-3): 47 doi: 10.1016/S0927-7757(02)00584-8
    [22] Lu Q Y, Yan B, Xie L, et al. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Sci Total Environ, 2016, 565: 369 doi: 10.1016/j.scitotenv.2016.04.192
    [23] Lemanowicz M, Jach Z, Kilian E, et al. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant. Chem Eng J, 2011, 168(1): 159 doi: 10.1016/j.cej.2010.12.057
    [24] Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res, 2000, 34(18): 4430 doi: 10.1016/S0043-1354(00)00209-8
    [25] Fan A X, Turro N J, Somasundaran P. A study of dual polymer flocculation. Colloids Surfaces A Physicochem Eng Aspects, 2000, 162(1-3): 141 doi: 10.1016/S0927-7757(99)00252-6
    [26] Sabah E, Yüzer H, ?elik M S. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int J Miner Process, 2004, 74(1-4): 303 doi: 10.1016/j.minpro.2004.03.001
    [27] Nasser M S, James A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol, 2006, 52(2): 241 doi: 10.1016/j.seppur.2006.04.005
    [28] Zbik M S, Smart R S C, Morris G E. Kaolinite flocculation structure. J Colloid Interface Sci, 2008, 328(1): 73 doi: 10.1016/j.jcis.2008.08.063
    [29] Mpofu P, Addai-Mensah J, Ralston J. Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci, 2004, 271(1): 145 doi: 10.1016/j.jcis.2003.09.042
    [30] Johnson S B, Scales P J, Dixon D R, et al. Use of a superthickener device to concentrate potable water sludge. Water Res, 2000, 34(1): 288 doi: 10.1016/S0043-1354(99)00118-9
    [31] Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
    [32] Gladman B R, Rudman M, Scales P J. Experimental validation of a 1-D continuous thickening model using a pilot column. Chem Eng Sci, 2010, 65(13): 3937 doi: 10.1016/j.ces.2010.03.029
    [33] Comings E W, Pruiss C E, DeBord C. Continuous settling and thickening. Ind Eng Chem, 1954, 46(6): 1164 doi: 10.1021/ie50534a030
    [34] Usher S P, Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function. Chem Eng J, 2005, 111(2-3): 253 doi: 10.1016/j.cej.2005.02.015
    [35] Gladman B, de Kretser R G, Rudman M, et al. Effect of shear on particulate suspension dewatering. Chem Eng Res Des, 2005, 83(7): 933
    [36] Jiao H Z, Jin X F, Chen X M, et al. Distribution of water channel and law of meso seepage in gravity thickening of unclassified tailings. Gold Sci Technol, 2019, 27(5): 731

    焦華喆, 靳翔飛, 陳新明, 等. 全尾砂重力濃密導水通道分布與細觀滲流規律. 黃金科學技術, 2019, 27(5):731
    [37] Jeldres R I, Fawell P D, Florio B J. Population balance modelling to describe the particle aggregation process: A review. Powder Technol, 2018, 326: 190 doi: 10.1016/j.powtec.2017.12.033
    [38] O'Donnell J A, Bayrak N. Review of channelling in batch sedimentation // 32nd Australasian Chemical Engineering Conference: Sustainable Processes. Sydney, 2004: 822
    [39] Du J H, Pushkarova R A, Smart R S C. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes. Int J Miner Process, 2009, 93(1): 66 doi: 10.1016/j.minpro.2009.06.004
    [40] Eswaraiah C, Biswal S K, Mishra B K. Settling characteristics of ultrafine iron ore slimes. Int J Miner Metall Mater, 2012, 19(2): 95 doi: 10.1007/s12613-012-0521-6
    [41] Wu A X, Wang H J. Theory and Technology of Paste Technology in Metal Mines. Beijing: Science Press, 2015

    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
    [42] Kynch G J. A theory of sedimentation. Trans Faraday Soc, 1952, 48(0): 166
    [43] Batchelor G K. Sedimentation in a dilute dispersion of spheres. J Fluid Mech, 1972, 52(2): 245 doi: 10.1017/S0022112072001399
    [44] Fitch B. Current theory and thickener design. Ind Eng Chem, 1966, 58(10): 18 doi: 10.1021/ie50682a006
    [45] Buscall R, White L R. The consolidation of concentrated suspensions. Part 1. —The theory of sedimentation. J Chem Soc,Faraday Trans 1, 1987, 83(3): 873 doi: 10.1039/f19878300873
    [46] Landman K A, White L R, Eberl M. Pressure filtration of flocculated suspensions. AIChE J, 1995, 41(7): 1687 doi: 10.1002/aic.690410709
    [47] Betancourt F, Bürger R, Diehl S, et al. Advanced methods of flux identification for clarifier-thickener simulation models. Miner Eng, 2014, 63: 2 doi: 10.1016/j.mineng.2013.09.012
    [48] Parsapour G A, Hossininasab M, Yahyaei M, et al. Effect of settling test procedure on sizing thickeners. Sep Purif Technol, 2014, 122: 87 doi: 10.1016/j.seppur.2013.11.001
    [49] Landman K A, White L R, Buscall R. The continuous-flow gravity thickener: Steady state behavior. AIChE J, 1988, 34(2): 239 doi: 10.1002/aic.690340208
    [50] Usher S P, Spehar R, Scales P J. Theoretical analysis of aggregate densification: Impact on thickener performance. Chem Eng J, 2009, 151(1-3): 202 doi: 10.1016/j.cej.2009.02.027
    [51] Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025

    王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025
    [52] Yin S H, Wang Y. Influence of mud height on the concentrastion of the fine tailing. Sci Technol Rev, 2012, 30(7): 29 doi: 10.3981/j.issn.1000-7857.2012.07.004

    尹升華, 王勇. 泥層高度對細粒全尾濃密規律的影響. 科技導報, 2012, 30(7):29 doi: 10.3981/j.issn.1000-7857.2012.07.004
    [53] Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Centl South Univ Sci Technol, 2012, 43(4): 1469

    吳愛祥, 焦華喆, 王洪江, 等. 深錐濃密機攪拌刮泥耙扭矩力學模型. 中南大學學報(自然科學版), 2012, 43(4):1469
    [54] Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J, 2000, 80(1-3): 13 doi: 10.1016/S1383-5866(00)00072-1
    [55] Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci, 2002, 95(1): 1 doi: 10.1016/S0001-8686(00)00078-6
    [56] Yang Z, Yuan B, Huang X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res, 2012, 46(1): 107 doi: 10.1016/j.watres.2011.10.024
    [57] Zhang F D, Li G D, Pei J C, et al. Study on the dynamic flocculation process of Kaolin suspensions induced by cationic polyacrylamide by using FBRM. China Pulp Pap, 2013, 32(10): 15 doi: 10.11980/j.issn.0254-508X.2013.10.004

    張方東, 李國棟, 裴繼誠, 等. 利用FBRM研究陽離子聚丙烯酰胺對高嶺土的動態絮凝過程. 中國造紙, 2013, 32(10):15 doi: 10.11980/j.issn.0254-508X.2013.10.004
    [58] Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
    [59] Rudman M, Paterson D A, Simic K. Efficiency of raking in gravity thickeners. Int J Miner Process, 2010, 95(1-4): 30 doi: 10.1016/j.minpro.2010.03.007
    [60] Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. Appl Math Model, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [61] Qiu L C, Liu J J, Liu Y, et al. CFD?DEM simulation of flocculation and sedimentation of cohesive fine particles // Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017: 537
    [62] Chaumeil F, Crapper M. Using the DEM?CFD method to predict Brownian particle deposition in a constricted tube. Particuology, 2014, 15: 94
  • 加載中
圖(6)
計量
  • 文章訪問數:  3293
  • HTML全文瀏覽量:  594
  • PDF下載量:  116
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-11
  • 網絡出版日期:  2021-04-09
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回