[1] |
Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018程海勇. 時—溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018
|
[2] |
Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019李公成. 全尾砂絮團尺寸變化及其濃密性能研究[學位論文]. 北京: 北京科技大學, 2019
|
[3] |
Ma C X, Qin H L. On the dam stability of the tailing pond based on the analysis on the seepage stability. Ind Saf Environ Prot, 2008, 34(9): 32 doi: 10.3969/j.issn.1001-425X.2008.09.014馬池香, 秦華禮. 基于滲透穩定性分析的尾礦庫壩體穩定性研究. 工業安全與環保, 2008, 34(9):32 doi: 10.3969/j.issn.1001-425X.2008.09.014
|
[4] |
Jiangsu, Lu H, Cao R X, et al. Pollution evaluation of heavy metal in soils of an iron mine's tailing reservoir and its surrounding region. Environ Sci Technol, 2014, 37(Suppl 1): 274姜素, 陸華, 曹瑞祥, 等. 某鐵礦尾礦庫及周邊土壤重金屬污染評價. 環境科學與技術, 2014, 37(增刊1): 274
|
[5] |
Wang X L, Yao W X, Wang H, et al. The directions of R & D on backfill with waste rock and total tailings in underground mine. China Min Mag, 2011, 20(9): 76 doi: 10.3969/j.issn.1004-4051.2011.09.020王賢來, 姚維信, 王虎, 等. 礦山廢石全尾砂充填研究現狀與發展趨勢. 中國礦業, 2011, 20(9):76 doi: 10.3969/j.issn.1004-4051.2011.09.020
|
[6] |
Concha F, Bürger R. Thickening in the 20th century: A historical perspective. Min Metall Explor, 2003, 20(2): 57
|
[7] |
Concha F, Bürger R. A century of research in sedimentation and thickening. KONA Powder Part J, 2002, 20: 38 doi: 10.14356/kona.2002009
|
[8] |
Zhan H H, Luo Y W. Research on flocculation setting of high density fine particle coal slurry. Coal Sci Technol, 2007, 35(2): 76 doi: 10.3969/j.issn.0253-2336.2007.02.023湛含輝, 羅彥偉. 高濃度細粒煤泥水的絮凝沉降研究. 煤炭科學技術, 2007, 35(2):76 doi: 10.3969/j.issn.0253-2336.2007.02.023
|
[9] |
Chen S W, Tong K W, Ma Z S, et al. High efficiency thickener—Current status and application prospects. Met Mine Des Constr, 1997(1): 48陳述文, 馬振聲. 高效濃密機的應用現狀及前景. 冶金礦山設計與建設, 1997(1):48
|
[10] |
Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276阮竹恩, 吳愛祥, 王貽明, 等. 絮凝沉降對濃縮超細尾砂料漿屈服應力的影響. 工程科學學報, 2021, 43(10):1276
|
[11] |
Zhou X, Ruan Z E, Wu A X, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM. Chin J Eng, 2021, 43(11): 1425周旭, 阮竹恩, 吳愛祥, 等. 基于FBRM和PVM技術的尾礦濃密過程絮團演化規律. 工程科學學報, 2021, 43(11):1425
|
[12] |
Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone? paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
|
[13] |
Chen H J, He Y M, Luan J L, et al. Comparison of tailings stacking technologies and their applications. Yunnan Metall, 2012, 41(4): 68 doi: 10.3969/j.issn.1006-0308.2012.04.018陳華君, 何艷明, 欒景麗, 等. 尾礦堆存處理工藝比較及應用. 云南冶金, 2012, 41(4):68 doi: 10.3969/j.issn.1006-0308.2012.04.018
|
[14] |
Guo L J, Yu B. Status and future of filling technology and equipment in metal mines in China. Min Technol, 2011, 11(3): 12 doi: 10.3969/j.issn.1671-2900.2011.03.004郭利杰, 余斌. 中國金屬礦山充填技術與裝備的現狀和未來. 采礦技術, 2011, 11(3):12 doi: 10.3969/j.issn.1671-2900.2011.03.004
|
[15] |
Li S L, Du Y Y. Application of paste technology in tailings stacking of dishui chalcopyrite of Xinjiang. Nonferrous Met Eng, 2016, 6(4): 73 doi: 10.3969/j.issn.2095-1744.2016.04.018李仕亮, 杜玉艷. 膏體技術在新疆滴水銅礦尾礦堆存中的應用. 有色金屬工程, 2016, 6(4):73 doi: 10.3969/j.issn.2095-1744.2016.04.018
|
[16] |
McMahon J. Optimizing tailings disposal and water recovery. Pollut Eng, 2014, 46(8): 20
|
[17] |
Gu C H. Research progress in coagulation mechanism of organic macro-molecular coagulants. J Chongqing Technol Bus Univ Nat Sci, 2007, 24(6): 573古昌紅. 有機高分子絮凝劑絮凝機理的研究進展. 重慶工商大學學報(自然科學版), 2007, 24(6):573
|
[18] |
Chang Q. Flocculation of Water Treatment. Beijing: Chemical Industry Press, 2003常青. 水處理絮凝學. 北京: 化學工業出版社, 2003
|
[19] |
Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
|
[20] |
Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Adv Environ Res, 2001, 5(2): 129 doi: 10.1016/S1093-0191(00)00049-6
|
[21] |
Petzold G, Mende M, Lunkwitz K, et al. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids Surfaces A Physicochem Eng Aspects, 2003, 218(1-3): 47 doi: 10.1016/S0927-7757(02)00584-8
|
[22] |
Lu Q Y, Yan B, Xie L, et al. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Sci Total Environ, 2016, 565: 369 doi: 10.1016/j.scitotenv.2016.04.192
|
[23] |
Lemanowicz M, Jach Z, Kilian E, et al. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant. Chem Eng J, 2011, 168(1): 159 doi: 10.1016/j.cej.2010.12.057
|
[24] |
Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res, 2000, 34(18): 4430 doi: 10.1016/S0043-1354(00)00209-8
|
[25] |
Fan A X, Turro N J, Somasundaran P. A study of dual polymer flocculation. Colloids Surfaces A Physicochem Eng Aspects, 2000, 162(1-3): 141 doi: 10.1016/S0927-7757(99)00252-6
|
[26] |
Sabah E, Yüzer H, ?elik M S. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int J Miner Process, 2004, 74(1-4): 303 doi: 10.1016/j.minpro.2004.03.001
|
[27] |
Nasser M S, James A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol, 2006, 52(2): 241 doi: 10.1016/j.seppur.2006.04.005
|
[28] |
Zbik M S, Smart R S C, Morris G E. Kaolinite flocculation structure. J Colloid Interface Sci, 2008, 328(1): 73 doi: 10.1016/j.jcis.2008.08.063
|
[29] |
Mpofu P, Addai-Mensah J, Ralston J. Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci, 2004, 271(1): 145 doi: 10.1016/j.jcis.2003.09.042
|
[30] |
Johnson S B, Scales P J, Dixon D R, et al. Use of a superthickener device to concentrate potable water sludge. Water Res, 2000, 34(1): 288 doi: 10.1016/S0043-1354(99)00118-9
|
[31] |
Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
|
[32] |
Gladman B R, Rudman M, Scales P J. Experimental validation of a 1-D continuous thickening model using a pilot column. Chem Eng Sci, 2010, 65(13): 3937 doi: 10.1016/j.ces.2010.03.029
|
[33] |
Comings E W, Pruiss C E, DeBord C. Continuous settling and thickening. Ind Eng Chem, 1954, 46(6): 1164 doi: 10.1021/ie50534a030
|
[34] |
Usher S P, Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function. Chem Eng J, 2005, 111(2-3): 253 doi: 10.1016/j.cej.2005.02.015
|
[35] |
Gladman B, de Kretser R G, Rudman M, et al. Effect of shear on particulate suspension dewatering. Chem Eng Res Des, 2005, 83(7): 933
|
[36] |
Jiao H Z, Jin X F, Chen X M, et al. Distribution of water channel and law of meso seepage in gravity thickening of unclassified tailings. Gold Sci Technol, 2019, 27(5): 731焦華喆, 靳翔飛, 陳新明, 等. 全尾砂重力濃密導水通道分布與細觀滲流規律. 黃金科學技術, 2019, 27(5):731
|
[37] |
Jeldres R I, Fawell P D, Florio B J. Population balance modelling to describe the particle aggregation process: A review. Powder Technol, 2018, 326: 190 doi: 10.1016/j.powtec.2017.12.033
|
[38] |
O'Donnell J A, Bayrak N. Review of channelling in batch sedimentation // 32nd Australasian Chemical Engineering Conference: Sustainable Processes. Sydney, 2004: 822
|
[39] |
Du J H, Pushkarova R A, Smart R S C. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes. Int J Miner Process, 2009, 93(1): 66 doi: 10.1016/j.minpro.2009.06.004
|
[40] |
Eswaraiah C, Biswal S K, Mishra B K. Settling characteristics of ultrafine iron ore slimes. Int J Miner Metall Mater, 2012, 19(2): 95 doi: 10.1007/s12613-012-0521-6
|
[41] |
Wu A X, Wang H J. Theory and Technology of Paste Technology in Metal Mines. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
|
[42] |
Kynch G J. A theory of sedimentation. Trans Faraday Soc, 1952, 48(0): 166
|
[43] |
Batchelor G K. Sedimentation in a dilute dispersion of spheres. J Fluid Mech, 1972, 52(2): 245 doi: 10.1017/S0022112072001399
|
[44] |
Fitch B. Current theory and thickener design. Ind Eng Chem, 1966, 58(10): 18 doi: 10.1021/ie50682a006
|
[45] |
Buscall R, White L R. The consolidation of concentrated suspensions. Part 1. —The theory of sedimentation. J Chem Soc,Faraday Trans 1, 1987, 83(3): 873 doi: 10.1039/f19878300873
|
[46] |
Landman K A, White L R, Eberl M. Pressure filtration of flocculated suspensions. AIChE J, 1995, 41(7): 1687 doi: 10.1002/aic.690410709
|
[47] |
Betancourt F, Bürger R, Diehl S, et al. Advanced methods of flux identification for clarifier-thickener simulation models. Miner Eng, 2014, 63: 2 doi: 10.1016/j.mineng.2013.09.012
|
[48] |
Parsapour G A, Hossininasab M, Yahyaei M, et al. Effect of settling test procedure on sizing thickeners. Sep Purif Technol, 2014, 122: 87 doi: 10.1016/j.seppur.2013.11.001
|
[49] |
Landman K A, White L R, Buscall R. The continuous-flow gravity thickener: Steady state behavior. AIChE J, 1988, 34(2): 239 doi: 10.1002/aic.690340208
|
[50] |
Usher S P, Spehar R, Scales P J. Theoretical analysis of aggregate densification: Impact on thickener performance. Chem Eng J, 2009, 151(1-3): 202 doi: 10.1016/j.cej.2009.02.027
|
[51] |
Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025王勇, 王洪江, 吳愛祥. 基于高徑比的深錐濃密機底流濃度數學模型. 武漢理工大學學報, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025
|
[52] |
Yin S H, Wang Y. Influence of mud height on the concentrastion of the fine tailing. Sci Technol Rev, 2012, 30(7): 29 doi: 10.3981/j.issn.1000-7857.2012.07.004尹升華, 王勇. 泥層高度對細粒全尾濃密規律的影響. 科技導報, 2012, 30(7):29 doi: 10.3981/j.issn.1000-7857.2012.07.004
|
[53] |
Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Centl South Univ Sci Technol, 2012, 43(4): 1469吳愛祥, 焦華喆, 王洪江, 等. 深錐濃密機攪拌刮泥耙扭矩力學模型. 中南大學學報(自然科學版), 2012, 43(4):1469
|
[54] |
Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J, 2000, 80(1-3): 13 doi: 10.1016/S1383-5866(00)00072-1
|
[55] |
Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci, 2002, 95(1): 1 doi: 10.1016/S0001-8686(00)00078-6
|
[56] |
Yang Z, Yuan B, Huang X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res, 2012, 46(1): 107 doi: 10.1016/j.watres.2011.10.024
|
[57] |
Zhang F D, Li G D, Pei J C, et al. Study on the dynamic flocculation process of Kaolin suspensions induced by cationic polyacrylamide by using FBRM. China Pulp Pap, 2013, 32(10): 15 doi: 10.11980/j.issn.0254-508X.2013.10.004張方東, 李國棟, 裴繼誠, 等. 利用FBRM研究陽離子聚丙烯酰胺對高嶺土的動態絮凝過程. 中國造紙, 2013, 32(10):15 doi: 10.11980/j.issn.0254-508X.2013.10.004
|
[58] |
Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
|
[59] |
Rudman M, Paterson D A, Simic K. Efficiency of raking in gravity thickeners. Int J Miner Process, 2010, 95(1-4): 30 doi: 10.1016/j.minpro.2010.03.007
|
[60] |
Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. Appl Math Model, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
|
[61] |
Qiu L C, Liu J J, Liu Y, et al. CFD?DEM simulation of flocculation and sedimentation of cohesive fine particles // Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017: 537
|
[62] |
Chaumeil F, Crapper M. Using the DEM?CFD method to predict Brownian particle deposition in a constricted tube. Particuology, 2014, 15: 94
|