Metallographic analysis and kinetic equation of the graphitization process of graphitized steel
-
摘要: 在650、680和710 ℃不同溫度條件下對碳質量分數為0.66%的淬火高碳鋼進行了石墨化處理,并利用場發射掃描電子顯微鏡、電子探針、X-射線衍射儀和透射電子顯微鏡對其石墨化過程的組織進行金相分析,以及利用組織轉變動力學理論,繪制了其石墨化過程的動力學曲線,并建立了相應的動力學方程。研究結果顯示:在石墨化過程中,淬火馬氏體首先向析出碳化物的穩定狀態轉變,且在碳化物為滲碳體Fe3C時,石墨粒子析出速度開始明顯增加;基體組織中針葉狀α-Fe發生再結晶,由等軸狀鐵素體逐步代替針葉狀的α-Fe;鐵素體中的碳含量隨著石墨化時間的延長而逐步降低,即由過飽和狀態轉變為穩定態,碳含量在石墨粒子中突變增為峰值,而鐵含量則突變降為谷值,由此表明,滲碳體分解的碳向石墨核心擴散,鐵自石墨核心處擴散出來,而形成石墨粒子;石墨粒子面積分數隨時間變化的曲線呈S形狀,即該動力學過程符合動力學模型JMAK(Johnson-Mehl-Avrami-Kolmogorov)方程,且該方程中的n值為1.5~1.7。
-
關鍵詞:
- 石墨化鋼 /
- 石墨粒子 /
- 鐵素體 /
- 金相分析 /
- JMAK(Johnson-Mehl-Avrami-Kolmogorov)方程
Abstract: Graphitized steel can have good machinability and formability, or high strength through controlling microstructure. The graphitization process is formation of graphite particles in graphitized steel, which is key to control the microstructure and properties of the steel. In this paper, the quenched high carbon steel with 0.66% carbon (mass fraction) was graphitized at 650, 680, and 710℃, respectively. The microstructure formed during the graphitization process was analyzed by a field emission scanning electron microscope, electron probe microanalysis, X-ray diffraction, and a transmission electron microscope. According to the dynamic theory of phase transformation, the kinetic curve of the graphitization process was drawn, and the corresponding kinetic equation was established. The results show that in the graphitization process, the quenched martensite is first transformed to the stable state of precipitation carbide. When the carbide is cementite Fe3C, the precipitation rate of graphite particles increases significantly. The acicular α-Fe in the matrix recrystallizes, and is gradually replaced by equiaxed ferrite. With prolonged graphitization time, the carbon content in ferrite decreases gradually; that is, it changes from a supersaturated state to a stable state. The carbon content increases to the peak value in graphite particles, whereas that of Fe decreases to the valley value. These changes show that the decomposed carbon of cementite, Fe3C, diffuses into the graphite core, whereas Fe diffuses from the graphite core, and then graphite particles are formed. Additionally, when steel is graphitized, the curve of graphite particle area fraction with time is an S shape; that is, the dynamic process of the tested steel is in accordance with the JMAK (Johnson-Mehl-Avrami-Kolmogorov) equation, and the value of n in the equation is between 1.5 and 1.7. -
圖 6 石墨化處理50 min時試樣的微觀組織及其元素分布曲線。(a)金相組織;(b)石墨粒子的形態;(c)C、Fe元素分布(基體);(d)C、Fe元素分布(鐵素體微區)
Figure 6. Microstructure and element distribution curve of samples graphitized for 50 min: (a) metallographic structure; (b) morphology of a graphite particle; (c) distribution of C and Fe in the matrix; (d) distribution of C and Fe in a ferrite region
表 1 不同溫度下的n值和k值
Table 1. Values of n and k at various temperatures
Temperature / ℃ n k 650 1.68 0.0403 680 1.61 0.0707 710 1.56 0.1279 www.77susu.com -
參考文獻
[1] Inam A, Edmonds D. Machinability of an experimental graphitised carbon steel. Mater Sci Forum, 2016, 879: 477 doi: 10.4028/www.scientific.net/MSF.879.477 [2] Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater Charact, 2015, 106: 86 doi: 10.1016/j.matchar.2015.05.014 [3] He K, Daniels H R, Brown A, et al. An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater, 2007, 55(9): 2919 doi: 10.1016/j.actamat.2006.12.029 [4] Katayama S, Toda M. Machinability of medium carbon graphitic steel. J Mater Process Technol, 1996, 62(4): 358 doi: 10.1016/S0924-0136(96)02435-1 [5] Iwamoto T, Murakami T. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition. Jfe Giho, 2004, 4: 74 [6] Iwamoto T, Hoshino T, Matsuzaki A, et al. A new developed unleaded free cutting steel which has both of high fatigue strengh and excellent machinability using graphitization of carbon in the steel. Material Japan, 2003, 42(2): 163 doi: 10.2320/materia.42.163 [7] Mokhtari A, Rashidi A M. The transformation of CK45 steel to the dual phase graphite steel and the study of its microstructure. Indian J Fund Appl Life Sci, 2015, 5(S2): 1749 [8] Rounaghi S A, Kiani-Rashid A R. A study on graphitisation acceleration during annealing of martensitic hypereutectoid steel. Phase Transitions, 2011, 84(11-12): 981 doi: 10.1080/01411594.2011.563153 [9] Inam A, He K J, Edmonds D. Graphitisation: A potential new route to free-machining steels // Proceedings of HSLA Steels 2015 and Micro alloying 2015 and OES 2015. Hangzhou, 2016: 817 [10] Kim Y J, Bae S W, Lim N S, et al. Graphitization behavior of medium-carbon high-silicon steel and its dependence on temperature and grain size. Mater Sci Eng A, 2020, 785: 139392 doi: 10.1016/j.msea.2020.139392 [11] Gao J X, Wei B Q, Li D D, et al. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel. Mater Charact, 2016, 118: 1 doi: 10.1016/j.matchar.2016.05.003 [12] Chen X Y. Study on Graphitization Process of Medium Carbon Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2016陳宣宇. 中碳鋼的石墨化工藝研究[學位論文]. 昆明: 昆明理工大學, 2016 [13] Chen X Y, Cao J C, Zhou X L. Effect of heat treatment on microstructure of graphitized free-cutting steel. Hot Work Technol, 2017, 46(4): 234陳宣宇, 曹建春, 周曉龍. 熱處理對石墨易切削鋼顯微組織的影響. 熱加工工藝, 2017, 46(4):234 [14] Zhang Z, Li R W, Ma K X, et al. Effect of medium temperature deformation on graphitization of 45 steel. J Univ Sci Technol Liaoning, 2018, 41(5): 351張政, 李瑞武, 馬柯鑫, 等. 中溫形變對45鋼石墨化的影響. 遼寧科技大學學報, 2018, 41(5):351 [15] Zhang Y J. Research and Development of Hypoeutectoid Graphitized Free Cutting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, Shougang Research Institute of Technology, 2006張永軍. 亞共析石墨化易切削鋼的研究與開發[博士后研究工作報告]. 北京: 北京科技大學, 首鋼技術研究院, 2006 [16] Zhang Y J, Han J T, Wang Q L, et al. Research and development of graphitized hypoeutectoid free cutting steel. Iron Steel, 2008, 43(8): 73 doi: 10.3321/j.issn:0449-749X.2008.08.017張永軍, 韓靜濤, 王全禮, 等. 亞共析石墨化易切削鋼的開發. 鋼鐵, 2008, 43(8):73 doi: 10.3321/j.issn:0449-749X.2008.08.017 [17] Zhang Y J, Han J T. Microstructure and properties of graphitized free-cutting steel. Russ Metall (Met) , 2018, 2018(3): 248 doi: 10.1134/S0036029518030126 [18] Zhang Y J, Zhang P C, Zhang B, et al. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel. Chin J Eng, 2019, 41(8): 1037張永軍, 張鵬程, 張波, 等. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為. 工程科學學報, 2019, 41(8):1037 [19] Zhang Y J, Wang J H, Li X P, et al. Experimental research on the deformation behavior of graphitized steel under medium temperature compression. J Harbin Eng Univ, 2021, 42(3): 433張永軍, 王九花, 李新鵬, 等. 石墨化鋼壓縮溫變形行為的試驗研究. 哈爾濱工程大學學報, 2021, 42(3):433 [20] Yin Y Y, Fang F, Yan X, et al. Microstructure and properties of environmental graphitized free-cutting steel. Trans Mater Heat Treat, 2013, 34(4): 133尹云洋, 方芳, 嚴翔, 等. 環保石墨易切削鋼的組織及性能. 材料熱處理學報, 2013, 34(4):133 [21] Yin Y Y, Fang F, Luo G H, et al. Microstructure evolution of environmental graphitized hypoeutectoid free cutting steel. Appl Mech Mater, 2014, 633-634: 192 doi: 10.4028/www.scientific.net/AMM.633-634.192 [22] Jia B. High carbon cold rolled sheet with excellent formability. Iron Steel, 1993(9): 75佳貝. 加工性能優良的高碳冷軋薄板. 鋼鐵, 1993(9):75) [23] Fukui K, Mizui N, Arai M, et al. Effect of carbon and phosphorus contents on the graphitization of cementite in high carbon sheet steels. Tetsu-to-hagané, 1996, 82(12): 1029 [24] Neri M A, Colás R, Valtierra S. Graphitization in high carbon commercial steels. J Mater Eng Perform, 1998, 7(4): 467 doi: 10.1361/105994998770347602 [25] Guo Z H. Kinetics and Crystallography of Solid State Transformations. Shanghai: Shanghai Jiao Tong University Press, 2019郭正洪. 固態相變動力學及晶體學. 上海: 上海交通大學出版社, 2019 [26] Cai X. Fundamentals of Materials Science and Engineering. Shanghai: Shanghai Jiao Tong University Press, 2010蔡珣. 材料科學與工程基礎. 上海: 上海交通大學出版社, 2010 -