<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石墨化鋼石墨化過程的金相分析及其動力學方程

張永軍 李新鵬 王九花 劉靖 韓靜濤

張永軍, 李新鵬, 王九花, 劉靖, 韓靜濤. 石墨化鋼石墨化過程的金相分析及其動力學方程[J]. 工程科學學報, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004
引用本文: 張永軍, 李新鵬, 王九花, 劉靖, 韓靜濤. 石墨化鋼石墨化過程的金相分析及其動力學方程[J]. 工程科學學報, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004
ZHANG Yong-jun, LI Xin-peng, WANG Jiu-hua, LIU Jing, HAN Jing-Tao. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004
Citation: ZHANG Yong-jun, LI Xin-peng, WANG Jiu-hua, LIU Jing, HAN Jing-Tao. Metallographic analysis and kinetic equation of the graphitization process of graphitized steel[J]. Chinese Journal of Engineering, 2022, 44(2): 228-234. doi: 10.13374/j.issn2095-9389.2021.01.10.004

石墨化鋼石墨化過程的金相分析及其動力學方程

doi: 10.13374/j.issn2095-9389.2021.01.10.004
基金項目: 北京市自然科學基金資助項目(2172035)
詳細信息
    通訊作者:

    E-mail: zhangyj@mater.ustb.edu.cn

  • 中圖分類號: TG113.26

Metallographic analysis and kinetic equation of the graphitization process of graphitized steel

More Information
  • 摘要: 在650、680和710 ℃不同溫度條件下對碳質量分數為0.66%的淬火高碳鋼進行了石墨化處理,并利用場發射掃描電子顯微鏡、電子探針、X-射線衍射儀和透射電子顯微鏡對其石墨化過程的組織進行金相分析,以及利用組織轉變動力學理論,繪制了其石墨化過程的動力學曲線,并建立了相應的動力學方程。研究結果顯示:在石墨化過程中,淬火馬氏體首先向析出碳化物的穩定狀態轉變,且在碳化物為滲碳體Fe3C時,石墨粒子析出速度開始明顯增加;基體組織中針葉狀α-Fe發生再結晶,由等軸狀鐵素體逐步代替針葉狀的α-Fe;鐵素體中的碳含量隨著石墨化時間的延長而逐步降低,即由過飽和狀態轉變為穩定態,碳含量在石墨粒子中突變增為峰值,而鐵含量則突變降為谷值,由此表明,滲碳體分解的碳向石墨核心擴散,鐵自石墨核心處擴散出來,而形成石墨粒子;石墨粒子面積分數隨時間變化的曲線呈S形狀,即該動力學過程符合動力學模型JMAK(Johnson-Mehl-Avrami-Kolmogorov)方程,且該方程中的n值為1.5~1.7。

     

  • 圖  1  用于石墨化處理試樣的原始金相組織及其元素分布曲線。(a)金相組織;(b)C、Fe元素分布

    Figure  1.  Original structure and element distribution curve of the graphitized sample: (a) metallographic structure; (b) distribution of C and iron Fe

    圖  2  石墨化處理5 min時試樣的微觀組織及其元素分布曲線。(a)金相組織;(b)C、Fe元素分布

    Figure  2.  Microstructure and element distribution curve of sample graphitized for 5 min: (a) metallographic structure; (b) distribution of C and Fe

    圖  3  石墨化處理30 min時試樣的微觀組織及其元素分布曲線。(a)金相組織;(b)C、Fe元素分布

    Figure  3.  Microstructure and element distribution curve of a graphitized sample for 30 min: (a) metallographic structure; (b) distribution of C and Fe

    圖  4  石墨化處理30 min時試樣中的α-Fe[111]晶帶軸與Fe3C[012]晶帶軸復合電子衍射圖。(a)TEM圖像;(b)電子衍射圖

    Figure  4.  Composite electron diffraction pattern of α-Fe [111] and Fe3C [012] crystal belt axes in the sample graphitized for 30 min: (a) TEM image; (b) electron diffraction pattern

    圖  5  石墨化處理30 min時試樣電解萃取產物的XRD衍射曲線

    Figure  5.  XRD diffraction curve of electrolytic extraction products from the samples graphitized for 30 min

    圖  6  石墨化處理50 min時試樣的微觀組織及其元素分布曲線。(a)金相組織;(b)石墨粒子的形態;(c)C、Fe元素分布(基體);(d)C、Fe元素分布(鐵素體微區)

    Figure  6.  Microstructure and element distribution curve of samples graphitized for 50 min: (a) metallographic structure; (b) morphology of a graphite particle; (c) distribution of C and Fe in the matrix; (d) distribution of C and Fe in a ferrite region

    圖  7  石墨化處理1 h(a)和3 h(b)試樣的微觀組織

    Figure  7.  Microstructures of the samples graphitized for 1 h (a) and 3 h (b)

    圖  8  石墨化處理5 h時試樣的微觀組織及其元素分布曲線。(a)金相組織;(b)C、Fe元素分布

    Figure  8.  Microstructure and element distribution curve of the samples graphitized for 5 h: (a) metallographic structure; (b) distribution of C and Fe

    圖  9  石墨化處理16 h時試樣的微觀組織及其C元素分布曲線。(a)金相組織;(b)C、Fe元素分布

    Figure  9.  Microstructure and carbon element distribution curve of the graphitized samples for 16 h: (a) metallographic structure; (b) distribution of carbon

    圖  10  石墨粒子的TEM圖像及其電子衍射圖。(a)石墨粒子的TEM圖像;(b)石墨粒子的電子衍射圖

    Figure  10.  TEM images and electron diffraction patterns of graphite particles: (a) TEM image of a graphite particle; (b) electron diffraction pattern of a graphite particle

    圖  11  實驗用鋼石墨化過程的動力學曲線

    Figure  11.  Kinetics curve of the graphitization process of tested steel

    圖  12  ln t與ln[ln(1?y)?1]之間的線性回歸

    Figure  12.  The linear regression between ln t and ln[ln(1?y)?1]

    表  1  不同溫度下的n值和k

    Table  1.   Values of n and k at various temperatures

    Temperature / ℃nk
    6501.680.0403
    6801.610.0707
    7101.560.1279
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Inam A, Edmonds D. Machinability of an experimental graphitised carbon steel. Mater Sci Forum, 2016, 879: 477 doi: 10.4028/www.scientific.net/MSF.879.477
    [2] Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater Charact, 2015, 106: 86 doi: 10.1016/j.matchar.2015.05.014
    [3] He K, Daniels H R, Brown A, et al. An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta Mater, 2007, 55(9): 2919 doi: 10.1016/j.actamat.2006.12.029
    [4] Katayama S, Toda M. Machinability of medium carbon graphitic steel. J Mater Process Technol, 1996, 62(4): 358 doi: 10.1016/S0924-0136(96)02435-1
    [5] Iwamoto T, Murakami T. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition. Jfe Giho, 2004, 4: 74
    [6] Iwamoto T, Hoshino T, Matsuzaki A, et al. A new developed unleaded free cutting steel which has both of high fatigue strengh and excellent machinability using graphitization of carbon in the steel. Material Japan, 2003, 42(2): 163 doi: 10.2320/materia.42.163
    [7] Mokhtari A, Rashidi A M. The transformation of CK45 steel to the dual phase graphite steel and the study of its microstructure. Indian J Fund Appl Life Sci, 2015, 5(S2): 1749
    [8] Rounaghi S A, Kiani-Rashid A R. A study on graphitisation acceleration during annealing of martensitic hypereutectoid steel. Phase Transitions, 2011, 84(11-12): 981 doi: 10.1080/01411594.2011.563153
    [9] Inam A, He K J, Edmonds D. Graphitisation: A potential new route to free-machining steels // Proceedings of HSLA Steels 2015 and Micro alloying 2015 and OES 2015. Hangzhou, 2016: 817
    [10] Kim Y J, Bae S W, Lim N S, et al. Graphitization behavior of medium-carbon high-silicon steel and its dependence on temperature and grain size. Mater Sci Eng A, 2020, 785: 139392 doi: 10.1016/j.msea.2020.139392
    [11] Gao J X, Wei B Q, Li D D, et al. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel. Mater Charact, 2016, 118: 1 doi: 10.1016/j.matchar.2016.05.003
    [12] Chen X Y. Study on Graphitization Process of Medium Carbon Steel [Dissertation]. Kunming: Kunming University of Science and Technology, 2016

    陳宣宇. 中碳鋼的石墨化工藝研究[學位論文]. 昆明: 昆明理工大學, 2016
    [13] Chen X Y, Cao J C, Zhou X L. Effect of heat treatment on microstructure of graphitized free-cutting steel. Hot Work Technol, 2017, 46(4): 234

    陳宣宇, 曹建春, 周曉龍. 熱處理對石墨易切削鋼顯微組織的影響. 熱加工工藝, 2017, 46(4):234
    [14] Zhang Z, Li R W, Ma K X, et al. Effect of medium temperature deformation on graphitization of 45 steel. J Univ Sci Technol Liaoning, 2018, 41(5): 351

    張政, 李瑞武, 馬柯鑫, 等. 中溫形變對45鋼石墨化的影響. 遼寧科技大學學報, 2018, 41(5):351
    [15] Zhang Y J. Research and Development of Hypoeutectoid Graphitized Free Cutting Steel [Dissertation]. Beijing: University of Science and Technology Beijing, Shougang Research Institute of Technology, 2006

    張永軍. 亞共析石墨化易切削鋼的研究與開發[博士后研究工作報告]. 北京: 北京科技大學, 首鋼技術研究院, 2006
    [16] Zhang Y J, Han J T, Wang Q L, et al. Research and development of graphitized hypoeutectoid free cutting steel. Iron Steel, 2008, 43(8): 73 doi: 10.3321/j.issn:0449-749X.2008.08.017

    張永軍, 韓靜濤, 王全禮, 等. 亞共析石墨化易切削鋼的開發. 鋼鐵, 2008, 43(8):73 doi: 10.3321/j.issn:0449-749X.2008.08.017
    [17] Zhang Y J, Han J T. Microstructure and properties of graphitized free-cutting steel. Russ Metall (Met), 2018, 2018(3): 248 doi: 10.1134/S0036029518030126
    [18] Zhang Y J, Zhang P C, Zhang B, et al. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel. Chin J Eng, 2019, 41(8): 1037

    張永軍, 張鵬程, 張波, 等. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為. 工程科學學報, 2019, 41(8):1037
    [19] Zhang Y J, Wang J H, Li X P, et al. Experimental research on the deformation behavior of graphitized steel under medium temperature compression. J Harbin Eng Univ, 2021, 42(3): 433

    張永軍, 王九花, 李新鵬, 等. 石墨化鋼壓縮溫變形行為的試驗研究. 哈爾濱工程大學學報, 2021, 42(3):433
    [20] Yin Y Y, Fang F, Yan X, et al. Microstructure and properties of environmental graphitized free-cutting steel. Trans Mater Heat Treat, 2013, 34(4): 133

    尹云洋, 方芳, 嚴翔, 等. 環保石墨易切削鋼的組織及性能. 材料熱處理學報, 2013, 34(4):133
    [21] Yin Y Y, Fang F, Luo G H, et al. Microstructure evolution of environmental graphitized hypoeutectoid free cutting steel. Appl Mech Mater, 2014, 633-634: 192 doi: 10.4028/www.scientific.net/AMM.633-634.192
    [22] Jia B. High carbon cold rolled sheet with excellent formability. Iron Steel, 1993(9): 75

    佳貝. 加工性能優良的高碳冷軋薄板. 鋼鐵, 1993(9):75)
    [23] Fukui K, Mizui N, Arai M, et al. Effect of carbon and phosphorus contents on the graphitization of cementite in high carbon sheet steels. Tetsu-to-hagané, 1996, 82(12): 1029
    [24] Neri M A, Colás R, Valtierra S. Graphitization in high carbon commercial steels. J Mater Eng Perform, 1998, 7(4): 467 doi: 10.1361/105994998770347602
    [25] Guo Z H. Kinetics and Crystallography of Solid State Transformations. Shanghai: Shanghai Jiao Tong University Press, 2019

    郭正洪. 固態相變動力學及晶體學. 上海: 上海交通大學出版社, 2019
    [26] Cai X. Fundamentals of Materials Science and Engineering. Shanghai: Shanghai Jiao Tong University Press, 2010

    蔡珣. 材料科學與工程基礎. 上海: 上海交通大學出版社, 2010
  • 加載中
圖(12) / 表(1)
計量
  • 文章訪問數:  540
  • HTML全文瀏覽量:  314
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-10
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-02-15

目錄

    /

    返回文章
    返回