A survey of delay compensation and control based on continuum backstepping control algorithms for time-delay systems
-
摘要: 在實際系統的工作過程中,時滯現象普遍存在,如控制信號的采集與傳輸、控制器的構建與實施、事件的決策與處理等。考慮并有效處理時滯特性的影響有助于提升系統的性能。基于連續反演算法的時滯補償控制策略是一種有效的控制方法且取得很多研究成果。該時滯補償控制的主要思路是將具有時滯特性的常微分方程或偏微分方程變換為不具有時滯特性的常微分方程?偏微分方程/常微分方程?偏微分方程(ODE?PDE/PDE?PDE)級聯系統。進一步地,基于變換的級聯系統,結合連續反演算法提出相應的控制策略。該方法具有系統的穩定性證明簡單,魯棒性強,易于求取閉環系統精確解等優點。詳細論述了連續反演算法的基本原理,并針對基于連續反演算法的時滯補償控制算法在處理輸入、輸出、狀態等類型時滯特性的最新研究進展做簡單的闡述和總結。最后,開放式地論述了時滯系統的未來研究方向。Abstract: In practical control systems, time delays inevitably occur when sensors need to measure and require the system’s data for decision making as well as when microcontrollers (or other devices) compute and implement control signal processes. The time-delay phenomenon is common in network systems because information (e.g., plant output and control input) is exchanged via a network among control system components and communication delays inevitably arise. Time delays usually affect the dynamic performance of a system, such as the response time and operation accuracy of the system, and may even lead to system instability. Therefore, considering the effects of time delays and effectively compensating for them will improve the performance of a system. Recently, considerable attention has been paid to the study of time-delay problems based on a continuum backstepping control algorithm for its superiority on stability analysis. The design process mainly comprises three steps. First, the original system is transformed into an ordinary differential equation (ODE)–partial differential equation (PDE) or PDE–PDE cascaded system wherein a first-order hyperbolic transport-PDE is introduced to describe the time-delay phenomenon. Thereafter, the cascaded system is turned into a stable system using a Volterra transformation. Finally, a corresponding time-delay compensated control law is developed based on the proposed Volterra transformation. The algorithm based on the continuum backstepping control algorithm is robust, has an inverse optimal control, and exhibits great potential for explicit exact control laws. Moreover, the stability analysis and exact solutions of closed-loop systems are obtained easily. This survey summarizes the basic principle and design procedure of the time-delay compensation method and control law based on the continuum backstepping control algorithm. Further, the recent works of the time-delay compensation control based on this algorithm are introduced for time-delay systems covering the aspects of input, output, and state. Finally, the future works of the time-delay compensation control based on the continuum backstepping control algorithm are discussed.
-
表 1 目前PDE時滯補償控制研究內容
Table 1. Current research content of PDE time-delay compensation control
Delay type Frist-order PED Second-order PDE Constant Time varying Constant Time varying Known Unknown Known Unknown Known Unknown Known Unknown Input delay √ √ √ √ Output delay √ √ √ State delay √ √ www.77susu.com -
參考文獻
[1] Fridman E. Introduction to Time-delay Systems: Analysis and Control. New York: Springer, 2014 [2] Cao F R, Feng M L. An improved artificial fish swarm algorithm and its application on system identification with a time-delay system. Chin J Eng, 2017, 39(4): 619曹法如, 馮茂林. 改進人工魚群算法及其在時滯系統辨識中的應用. 工程科學學報, 2017, 39(4):619 [3] Li M, Chen Y. A wide-area dynamic damping controller based on robust H∞ control for wide-area power systems with random delay and packet dropout. IEEE Trans Power Syst, 2018, 33(4): 4026 doi: 10.1109/TPWRS.2017.2782792 [4] Yue D, Tian E G, Han Q L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Autom Control, 2013, 58(2): 475 doi: 10.1109/TAC.2012.2206694 [5] Imaida T, Yokokohji Y, Doi T, et al. Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans Robotics Autom, 2004, 20(3): 499 doi: 10.1109/TRA.2004.825271 [6] Mounier H, Rudolph J. Flatness-based control of nonlinear delay systems: A chemical reactor example. Int J Control, 1998, 71(5): 871 doi: 10.1080/002071798221614 [7] Liu L, Yin S, Zhang L X, et al. Improved results on asymptotic stabilization for stochastic nonlinear time-delay systems with application to a chemical reactor system. IEEE Trans Syst Man Cybern Syst, 2017, 47(1): 195 doi: 10.1109/TSMC.2016.2608799 [8] Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J Control Optim, 1988, 26(3): 697 doi: 10.1137/0326040 [9] Datko R. Two examples of ill-posedness with respect to small time delays in stabilized elastic systems. IEEE Trans Autom Control, 1993, 38(1): 163 doi: 10.1109/9.186332 [10] Lee T H, Park J H, Xu S Y. Relaxed conditions for stability of time-varying delay systems. Automatica, 2017, 75: 11 doi: 10.1016/j.automatica.2016.08.011 [11] Zheng G, Polyakov A, Levant A. Delay estimation via sliding mode for nonlinear time-delay systems. Automatica, 2018, 89: 266 doi: 10.1016/j.automatica.2017.11.033 [12] Wang T, Qiu J B, Gao H J. Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 1875 doi: 10.1109/TSMC.2016.2562511 [13] Zhou B, Egorov A V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems. Automatica, 2016, 71: 281 doi: 10.1016/j.automatica.2016.04.048 [14] Hamdy M, Abd-Elhaleem S, Fkirin M A. Time-varying delay compensation for a class of nonlinear control systems over network via H∞ adaptive fuzzy controller. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 2114 doi: 10.1109/TSMC.2016.2614779 [15] Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561 doi: 10.1137/060648891 [16] Nicaise S, Rebiai S E. Stabilization of the Schr?dinger equation with a delay term in boundary feedback or internal feedback. Port Math, 2011: 19 doi: 10.4171/PM/1879 [17] Yeganefar N, Pepe P, Dambrine M. Input-to-state stability of time-delay systems: A link with exponential stability. IEEE Trans Autom Control, 2008, 53(6): 1526 doi: 10.1109/TAC.2008.928340 [18] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans Autom Control, 2010, 55(2): 287 doi: 10.1109/TAC.2009.2034923 [19] Manitius A, Olbrot A. Finite spectrum assignment problem for systems with delays. IEEE Trans Autom Control, 1979, 24(4): 541 doi: 10.1109/TAC.1979.1102124 [20] Furtat I, Fridman E, Fradkov A. Disturbance compensation with finite spectrum assignment for plants with input delay. IEEE Trans Autom Control, 2018, 63(1): 298 doi: 10.1109/TAC.2017.2732279 [21] Lhachemi H, Prieur C. Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control. IEEE Trans Autom Control, 2021, 66(1): 105 doi: 10.1109/TAC.2020.2975003 [22] Krstic M, Smyshlyaev A. Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett, 2008, 57(9): 750 doi: 10.1016/j.sysconle.2008.02.005 [23] Zhou B, Lin Z L, Duan G R. Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 2012, 48(10): 2387 doi: 10.1016/j.automatica.2012.06.032 [24] Bekiaris-Liberis N, Krstic M. Predictor-feedback stabilization of multi-input nonlinear systems. IEEE Trans Autom Control, 2017, 62(2): 516 doi: 10.1109/TAC.2016.2558293 [25] Zhou B, Gao H J, Lin Z L, et al. Stabilization of linear systems with distributed input delay and input saturation. Automatica, 2012, 48(5): 712 doi: 10.1016/j.automatica.2012.02.007 [26] Guo B Z, Mei Z D. Output feedback stabilization for a class of first-order equation setting of collocated well-posed linear systems with time delay in observation. IEEE Trans Autom Control, 2020, 65(6): 2612 doi: 10.1109/TAC.2019.2941431 [27] Hashimoto T, Krstic M. Stabilization of reaction diffusion equations with state delay using boundary control input. IEEE Trans Autom Control, 2016, 61(12): 4041 doi: 10.1109/TAC.2016.2539001 [28] Smyshlyaev A, Krstic M. Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans Autom Control, 2004, 49(12): 2185 doi: 10.1109/TAC.2004.838495 [29] Meurer T. Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Berlin: Springer Science & Business Media, 2012 [30] Cerpa E, Coron J M. Rapid stabilization for a korteweg-de vries equation from the left dirichlet boundary condition. IEEE Trans Autom Control, 2013, 58(7): 1688 doi: 10.1109/TAC.2013.2241479 [31] Nakagiri S I. Deformation formulas and boundary control problems of first-order Volterra integro-differential equations with nonlocal boundary conditions. IMA J Math Control Inf, 2013, 30(3): 345 doi: 10.1093/imamci/dns026 [32] Zhu Y, Fridman E. Observer-based decentralized predictor control for large-scale interconnected systems with large delays. IEEE Trans Autom Control, 1396, PP(99): 1 [33] Zhu Y, Fridman E. Predictor methods for decentralized control of large-scale systems with input delays. Automatica, 2020, 116: 108903 doi: 10.1016/j.automatica.2020.108903 [34] Koga S, Bresch-Pietri D, Krstic M. Delay compensated control of the Stefan problem and robustness to delay mismatch. Int J Robust Nonlinear Control, 2020, 30(6): 2304 doi: 10.1002/rnc.4909 [35] Krstic M. On compensating long actuator delays in nonlinear control. IEEE Trans Autom Control, 2008, 53(7): 1684 doi: 10.1109/TAC.2008.928123 [36] Krstic M. Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 2008, 44(11): 2930 doi: 10.1016/j.automatica.2008.04.010 [37] Krstic M. Lyapunov stability of linear predictor feedback for time-varying input delay. IEEE Trans Autom Control, 2010, 55(2): 554 doi: 10.1109/TAC.2009.2038196 [38] Tsubakino D, Krstic M, Oliveira T R. Exact predictor feedbacks for multi-input LTI systems with distinct input delays. Automatica, 2016, 71: 143 doi: 10.1016/j.automatica.2016.04.047 [39] Bekiaris-Liberis N, Krstic M. Lyapunov stability of linear predictor feedback for distributed input delays. IEEE Trans Autom Control, 2011, 56(3): 655 doi: 10.1109/TAC.2010.2092030 [40] Cai X S, Bekiaris-Liberis N, Krstic M. Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans Autom Control, 2018, 63(1): 233 doi: 10.1109/TAC.2017.2722104 [41] Cai X S, Bekiaris-Liberis N, Krstic M. Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica, 2019, 103: 549 doi: 10.1016/j.automatica.2019.02.038 [42] Cai X S, Wu J, Zhan X S, et al. Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika, 2019: 727 doi: 10.14736/kyb-2019-4-0727 [43] Krstic M. Control of an unstable reaction-diffusion PDE with long input delay. Syst Control Lett, 2009, 58(10-11): 773 doi: 10.1016/j.sysconle.2009.08.006 [44] Gu J J, Wang J M. Backstepping state feedback regulator design for an unstable reaction-diffusion PDE with long time delay. J Dyn Control Syst, 2018, 24(4): 563 doi: 10.1007/s10883-017-9384-5 [45] Qi J, Krstic M, Wang S S. Stabilization of reaction-diffusions PDE with delayed distributed actuation. Syst Control Lett, 2019, 133: 104558 doi: 10.1016/j.sysconle.2019.104558 [46] Liu D Y, Han R M, Xu G Q. Controller design for distributed parameter systems with time delays in the boundary feedbacks via the backstepping method. Int J Control, 2020, 93(5): 1220 doi: 10.1080/00207179.2018.1500717 [47] Krstic M. Dead-time compensation for wave/string PDEs. J Dyn Syst Meas Control, 2011, 133(3): 031004 doi: 10.1115/1.4003638 [48] Bresch-Pietri D, Krstic M. Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 2009, 45(9): 2074 doi: 10.1016/j.automatica.2009.04.027 [49] Bresch-Pietri D, Chauvin J, Petit N. Adaptive control scheme for uncertain time-delay systems. Automatica, 2012, 48(8): 1536 doi: 10.1016/j.automatica.2012.05.056 [50] Zhu Y, Krstic M, Su H Y. Adaptive output feedback control for uncertain linear time-delay systems. IEEE Trans Autom Control, 2017, 62(2): 545 doi: 10.1109/TAC.2016.2555479 [51] Zhu Y, Krstic M. Delay-Adaptive Linear Control. Princeton: Princeton University Press, 2020 [52] Krstic M, Bresch-Pietri D. Delay-adaptive full-state predictor feedback for systems with unknown long actuator delay // 2019 American Control Conference. St. Louis, 2009: 4500 [53] Bresch-Pietri D, Krstic M. Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans Autom Control, 2010, 55(9): 2106 doi: 10.1109/TAC.2010.2050352 [54] Zhu Y, Su H Y, Krstic M. Adaptive backstepping control of uncertain linear systems under unknown actuator delay. Automatica, 2015, 54: 256 doi: 10.1016/j.automatica.2015.02.013 [55] Zhu Y, Krstic M, Su H Y. PDE boundary control of multi-input LTI systems with distinct and uncertain input delays. IEEE Trans Autom Control, 2018, 63(12): 4270 doi: 10.1109/TAC.2018.2810038 [56] Zhu Y, Krstic M, Su H Y. Delay-adaptive control for linear systems with distributed input delays. Automatica, 2020, 116: 108902 doi: 10.1016/j.automatica.2020.108902 [57] Ahmed-Ali T, Karafyllis I, Lamnabhi-Lagarrigue F. Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst Control Lett, 2013, 62(7): 539 doi: 10.1016/j.sysconle.2013.03.008 [58] Cacace F, Germani A, Manes C. An observer for a class of nonlinear systems with time varying observation delay. Syst Control Lett, 2010, 59(5): 305 doi: 10.1016/j.sysconle.2010.03.005 [59] Sanz R, García P, Krstic M. Observation and stabilization of LTV systems with time-varying measurement delay. Automatica, 2019, 103: 573 doi: 10.1016/j.automatica.2019.02.037 [60] Wang J, Pi Y J, Hu Y M, et al. State-observer design of a PDE-modeled mining cable elevator with time-varying sensor delays. IEEE Trans Control Syst Technol, 2020, 28(3): 1149 doi: 10.1109/TCST.2019.2897077 [61] Wang J, Krstic M. Delay-compensated control of sandwiched ODE-PDE-ODE hyperbolic systems for oil drilling and disaster relief. Automatica, 2020, 120: 109131 doi: 10.1016/j.automatica.2020.109131 [62] Pinto H L C P, Oliveira T R, Hsu L, et al. Sliding mode control for disturbance rejection in systems with measurement delay using PDE-backstepping predictor // 2018 Annual American Control Conference (ACC). Milwaukee, 2018: 4099 [63] Germani A, Manes C, Pepe P. A new approach to state observation of nonlinear systems with delayed output. IEEE Trans Autom Control, 2002, 47(1): 96 doi: 10.1109/9.981726 [64] Kazantzis N, Wright R A. Nonlinear observer design in the presence of delayed output measurements. Syst Control Lett, 2005, 54(9): 877 doi: 10.1016/j.sysconle.2004.12.005 [65] Ahmed-Ali T, Giri F, Krstic M, et al. PDE based observer design for nonlinear systems with large output delay. Syst Control Lett, 2018, 113: 1 doi: 10.1016/j.sysconle.2018.01.001 [66] Kang W, Fridman E. Boundary control of reaction-diffusion equation with state-delay in the presence of saturation. IFAC-PapersOnLine, 2017, 50(1): 12002 doi: 10.1016/j.ifacol.2017.08.2120 [67] Kang W, Fridman E. Regional stabilization of linear delayed Schr?dinger equation by constrained boundary control // 2018 Annual American Control Conference (ACC). Milwaukee, 2018: 3330. [68] Kang W, Fridman E. Boundary constrained control of delayed nonlinear schr?dinger equation. IEEE Trans Autom Control, 2018, 63(11): 3873 doi: 10.1109/TAC.2018.2800526 [69] Zhao Z J, Ren Z G. Boundary control of a flexible marine riser subject to nonsmooth actuator backlash-saturation constraints. Acta Autom Sin, 2019, 45(11): 2050趙志甲, 任志剛. 針對執行器非光滑反向間隙?飽和的柔性立管邊界控制. 自動化學報, 2019, 45(11):2050 [70] Feng J L, Liu Z J, He X Y, et al. Adaptive vibration control for an active mass damper of a high-rise building. IEEE Trans Syst Man Cybern:Syst, 6891, PP(99): 1 [71] Wang J, Koga S, Pi Y J, et al. Axial vibration suppression in a partial differential equation model of ascending mining cable elevator. J Dyn Syst Meas Control, 2018, 140(11): 111003 doi: 10.1115/1.4040217 [72] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685 [73] Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512 [74] He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.TP.20210629.0955.004.html賀威, 劉上平, 黃海豐, 等. 獨立驅動的仿鳥撲翼飛行機器人的系統設計與實驗. 控制理論與應用. http://kns.cnki.net/kcms/detail/44.1240.TP.20210629.0955.004.html [75] Fu Q, Chen X Y, He W. A survey on 3D visual tracking of multicopters. Int J Autom Comput, 2019, 16(6): 707 doi: 10.1007/s11633-019-1199-2 [76] Liu Z J, Song C C, Liang J Y, et al. Advances in modeling and control of probe-drogue aerial refueling. Chin J Eng, 2021(1): 150劉志杰, 宋叢叢, 梁金源, 等. 空中加油機加油軟管系統建模和控制研究進展. 工程科學學報, 2021(1):150 -

表(1)
計量
- 文章訪問數: 1510
- HTML全文瀏覽量: 408
- PDF下載量: 89
- 被引次數: 0