-
摘要: 基于爆破產生的P波入射作用下均勻內壓薄壁管道的受力特點,采用擬靜力分析和疊加原理建立壓力管道爆破地震波作用下的應力解析計算模型;基于壓力管道材料屈服特性及Tresca屈服理論,建立爆破P波作用下壓力管道的振動安全判據計算模型,并結合爆炸影響的直埋壓力薄壁管道工程案例進行解析驗算。研究結果表明:爆破荷載施加前管道僅受均勻內壓,具有初始軸向和切向應力,爆破發生后,管道同時受到內壓和爆破地震波P波動荷載作用;管?土界面入射波臨界角較小,管道峰值應力隨入射角度增大減小,垂直入射時主要發生拉伸破壞,全反射時主要為切向破壞;壓力管道安全控制振速隨入射角的增大而增大,隨運行內壓的增大而減小,實際工程中根據管道內壓實際情況,選擇較小的值作為安全控制值。Abstract: With the continuous development of urban underground space in China, safety problems between urban underground pipelines and underground engineering construction that are in active service are constantly emerging. As an important way of excavating engineering rock and soil mass, blasting has a particularly prominent impact on pressure pipelines due to its harmful seismic effect. It is of great significance to study the vibration damage effect of the pressure pipeline under the excavation blasting earthquake to guide the safety production of the adjacent pipeline blasting construction and the safety design of the pressure pipeline under the influence of adverse factors such as blasting vibration. Based on the above research requirements, the stress characteristics of a thin-walled pipe with uniform internal pressure under an incident P-wave caused by blasting are first analyzed. The stress analytical calculation model under the seismic wave of pressure pipeline blasting is then established by quasi-static analysis and superposition principle. Based on the yield characteristics of pressure pipeline materials and the Tresca yield theory, a safety criterion calculation model for the vibration velocity of pressure pipeline under P-wave blasting is established. Combined with two engineering cases of a directly buried pressure thin-walled pipeline under explosion, the calculation model is verified. Results show that before the application of blasting load, the pipeline is only subjected to uniform internal pressure with initial axial and tangential stresses. After blasting, the pipeline is subjected to both internal pressure and blasting seismic P-wave load. Results reveal that the peak stress of the pipeline decreases with the increase of the incident angle. Moreover, the tensile failure mainly occurs at normal incidence, and the tangential failure mainly occurs at the total reflection. The vibration velocity of the safety control of the pressure pipeline increases with the increase of the incident angle. In the actual project, according to the actual situation of the internal pressure of the pipeline, the smaller value is selected as the safety control value.
-
表 1 計算實例介質波速和臨界角計算
Table 1. Calculation examples’ media wave velocity and critical angle calculation
Examples cppipe/
(m·s?1)cpsoil/
(m·s?1)cspipe/
(m·s?1)cssoil/
(m·s?1)θpcritical/
(°)θscritical/
(°)Example 1 5618 260 3000 125 2.5 1.27 Example 2 5910 220 3159 111 2.25 1.13 表 2 不同入射角下的管道安全振速
Table 2. Safe vibration velocity of the pipeline under different incident angles
Examples Safety vibration velocity/(cm·s?1) Incident
angle of
0°Incident
angle of
10°Incident
angle of
20°Incident
angle of
30°Incident
angle of
40°Incident
angle of
50°Incident
angle of
60°Incident
angle of
70°Incident
angle of
80°Example 1 9.24 11.97 48.38 111.08 203.85 334.06 518.98 813.62 1511.81 Example 2 7.62 13.19 41.93 79.70 125.89 183.32 260.48 384.24 691.89 www.77susu.com -
參考文獻
[1] Zhang L M, Zhao M S, Chi E A, et al. Experiments for effect of blasting vibration on underground pipeline and risk prediction. J Vib Shock, 2017, 36(16): 241張黎明, 趙明生, 池恩安, 等. 爆破振動對地下管道影響試驗及風險預測. 振動與沖擊, 2017, 36(16):241 [2] Guan X M, Zhang L, Wang L M, et al. Blasting vibration characteristics and safety standard of pipeline passed down by tunnel in short distance. J Central South Univ Sci Technol, 2019, 50(11): 2870 doi: 10.11817/j.issn.1672-7207.2019.11.026管曉明, 張良, 王利民, 等. 隧道近距下穿管線的爆破振動特征及安全標準. 中南大學學報(自然科學版), 2019, 50(11):2870 doi: 10.11817/j.issn.1672-7207.2019.11.026 [3] Zheng S Y, Yang L Z. Dynamic response law of buried gas pipeline caused by blasting seismic waves of undercrossing tunneling. Blasting, 2015, 32(4): 69 doi: 10.3963/j.issn.1001-487X.2015.04.014鄭爽英, 楊立中. 下穿隧道爆破地震作用下埋地輸氣管道的動力響應規律研究. 爆破, 2015, 32(4):69 doi: 10.3963/j.issn.1001-487X.2015.04.014 [4] Xia Y Q, Jiang N, Yao Y K, et al. Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves. Explos Shock Waves, 2020, 40(4): 73夏宇磬, 蔣楠, 姚穎康, 等. 粉質黏土層預埋承插式混凝土管道對爆破振動的動力響應. 爆炸與沖擊, 2020, 40(4):73 [5] Zhu B, Jiang N, Jia Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines. Chin J Rock Mech Eng, 2019, 38(12): 2582朱斌, 蔣楠, 賈永勝, 等. 下穿燃氣管道爆破振動效應現場試驗研究. 巖石力學與工程學報, 2019, 38(12):2582 [6] Zhang L M, Zhao C L, Chi E A, et al. Experimental investigation on allowed blasting vibration velocity of underground pipeline. Blasting, 2019, 36(4): 146張黎明, 趙昌龍, 池恩安, 等. 地下管道爆破振動安全允許峰值振速試驗研究. 爆破, 2019, 36(4):146 [7] Zhong D W, Gong X C, Tu S W, et al. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave. Explos Shock Waves, 2019, 39(3): 51鐘冬望, 龔相超, 涂圣武, 等. 高飽和黏土中爆炸波作用下直埋聚乙烯管的動力響應. 爆炸與沖擊, 2019, 39(3):51 [8] Gong X C, Zhong D W, Si J F, et al. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves. Explos Shock Waves, 2020, 40(2): 13龔相超, 鐘冬望, 司劍峰, 等. 高飽和黏性土中爆炸波作用下直埋鋼管(空管)動態響應. 爆炸與沖擊, 2020, 40(2):13 [9] Mokhtari M, Alavi Nia A. A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Arch Civ Mech Eng, 2015, 15(3): 668 doi: 10.1016/j.acme.2014.12.013 [10] Mokhtari M, Alavi Nia A. The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dyn Earthq Eng, 2016, 87: 52 doi: 10.1016/j.soildyn.2016.04.009 [11] Liu Y P, Qiao L, Xu B. Dynamic response of liquid-filled pipe embedded in saturated soil due to P waves. Rock Soil Mech, 2013, 34(11): 3151劉優平, 喬蘭, 徐斌. P波作用下飽和土中輸流管道動力響應. 巖土力學, 2013, 34(11):3151 [12] Wang T C, Wang H. Dynamic analysis of underground liquid-filled pipe impacted by P waves. J Tianjin Univ, 2010, 43(4): 349王鐵成, 王卉. P波作用下地下輸流管道的動力響應分析. 天津大學學報, 2010, 43(4):349 [13] Ghaznavi A, Oskouei A V. The effect of three-dimensional earthquake P-wave propagational speed on buried continues straight steel pipelines. Eng J, 2017, 21(4): 39 doi: 10.4186/ej.2017.21.4.39 [14] He Z Y, Liu H X, He L M, et al. Research progress of fluctuating force caused by internal gas-liquid flow. Chin J Eng, 2021, 43(1): 129何兆洋, 劉海瀟, 何利民, 等. 管道內氣液兩相流流激力研究進展. 工程科學學報, 2021, 43(1):129 [15] Gao Q D, Lu W B, Yang Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting. Chin J Rock Mech Eng, 2019, 38(1): 18高啟棟, 盧文波, 楊招偉, 等. 垂直孔爆破誘發地震波的成分構成及演化規律. 巖石力學與工程學報, 2019, 38(1):18 [16] Li J C, Ma G W, Zhou Y X. Analytical study of underground explosion-induced ground motion. Rock Mech Rock Eng, 2012, 45(6): 1037 doi: 10.1007/s00603-011-0200-3 [17] Zhou J R, Lu W B, Zhang L, et al. Attenuation of vibration frequency during propagation of blasting seismic wave. Chin J Rock Mech Eng, 2014, 33(11): 2171周俊汝, 盧文波, 張樂, 等. 爆破地震波傳播過程的振動頻率衰減規律研究. 巖石力學與工程學報, 2014, 33(11):2171 [18] Chen M, Lu W B. The influence of explosive stress wave on young concrete lining. Rock Soil Mech, 2008, 29(2): 455 doi: 10.3969/j.issn.1000-7598.2008.02.031陳明, 盧文波. 爆炸應力波對新澆混凝土襯砌的影響研究. 巖土力學, 2008, 29(2):455 doi: 10.3969/j.issn.1000-7598.2008.02.031 [19] Liu X N, Liu C, Liu B, et al. Study on the evaluation method of the pressure vessel burst pressure calculation formula. J Mech Strength, 2017, 39(6): 1409劉小寧, 劉岑, 劉兵, 等. 承壓容器爆破壓力計算公式的評價方法研究. 機械強度, 2017, 39(6):1409 [20] Li H T, Lu W B, Shu D Q, et al. Study on the safety velocity for concrete lining under P wave loading. Explos Shock Waves, 2007, 27(1): 34 doi: 10.3321/j.issn:1001-1455.2007.01.006李洪濤, 盧文波, 舒大強, 等. P波作用下襯砌混凝土的爆破安全振動速度研究. 爆炸與沖擊, 2007, 27(1):34 doi: 10.3321/j.issn:1001-1455.2007.01.006 [21] Hu S Y, Zhou C B, Jiang N, et al. Study on safety blasting vibration velocity for concrete airport runway subjected to P-waves. J South China Univ Technol Nat Sci, 2018, 46(4): 129胡守云, 周傳波, 蔣楠, 等. P波作用下機場跑道的爆破安全振動速度研究. 華南理工大學學報(自然科學版), 2018, 46(4):129 [22] Zhang J, Zhang H, Zhang L, et al. Buckling response analysis of buried steel pipe under multiple explosive loadings. J Pipeline Syst Eng Pract, 2020, 11(2): 04020010 doi: 10.1061/(ASCE)PS.1949-1204.0000431 [23] Kong L C. Study on properties of nodular cast iron used for pressure vessel. Foundry Technol, 2015, 36(12): 2855孔令超. 壓力容器用球墨鑄鐵的性能研究. 鑄造技術, 2015, 36(12):2855 [24] Ministry of Construction of the People's Republic of China. GB20251—2015 Code for design of gas transmission pipeline engineering. Beijing: China Industrial Press, 2015中華人民共和國建設部. GB 50251—2015 輸氣管道工程設計規范. 北京: 建筑工業出版社, 2015 [25] Wang H T, Jin H, Jia J Q, et al. Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3332王海濤, 金慧, 賈金青, 等. 地鐵隧道鉆爆法施工對鄰近埋地管道影響的模型試驗研究. 巖石力學與工程學報, 2018, 37(增刊1): 3332 [26] Ministry of Construction of the People’s Republic of China. GB50028—2006 Urban Gas Design Code. Beijing: China Industrial Press, 2006中華人民共和國建設部. GB 50028—2006 城鎮燃氣設計規范. 北京: 中國建筑工業出版社, 2006 [27] General Administration of Quality Supervision. GB 6722—2014 Blasting Safety Code. Beijing: Standards Press of China, 2015中華人民共和國國家質量監督檢驗檢疫總局. GB 6722—2014爆破安全規程. 北京: 中國標準出版社, 2015 -