<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

橫向聲波擾動下的乙醇燃燒火焰結構和振蕩特性

張玉濤 林國鋮 史學強 張玉杰 王興明

張玉濤, 林國鋮, 史學強, 張玉杰, 王興明. 橫向聲波擾動下的乙醇燃燒火焰結構和振蕩特性[J]. 工程科學學報, 2022, 44(8): 1453-1461. doi: 10.13374/j.issn2095-9389.2021.01.08.002
引用本文: 張玉濤, 林國鋮, 史學強, 張玉杰, 王興明. 橫向聲波擾動下的乙醇燃燒火焰結構和振蕩特性[J]. 工程科學學報, 2022, 44(8): 1453-1461. doi: 10.13374/j.issn2095-9389.2021.01.08.002
ZHANG Yu-tao, LIN Guo-cheng, SHI Xue-qiang, ZHANG Yu-jie, WANG Xing-ming. Flame structure and oscillation characteristics of ethanol pool flame under transverse acoustic force[J]. Chinese Journal of Engineering, 2022, 44(8): 1453-1461. doi: 10.13374/j.issn2095-9389.2021.01.08.002
Citation: ZHANG Yu-tao, LIN Guo-cheng, SHI Xue-qiang, ZHANG Yu-jie, WANG Xing-ming. Flame structure and oscillation characteristics of ethanol pool flame under transverse acoustic force[J]. Chinese Journal of Engineering, 2022, 44(8): 1453-1461. doi: 10.13374/j.issn2095-9389.2021.01.08.002

橫向聲波擾動下的乙醇燃燒火焰結構和振蕩特性

doi: 10.13374/j.issn2095-9389.2021.01.08.002
基金項目: 國家自然科學基金資助項目(51774233,51974235); 陜西省自然科學基金資助項目( 2018JZ5007,2018JM5121); 國家重點研發計劃資助項目(2018YFC0807900)
詳細信息
    通訊作者:

    E-mail: ytzhang@xust.edu.cn

  • 中圖分類號: TU998.1

Flame structure and oscillation characteristics of ethanol pool flame under transverse acoustic force

More Information
  • 摘要: 為研究聲波滅火的機理,分析聲波對非封閉火焰的具體控制行為,對3、4和5 cm直徑油池火焰在30 ~ 90 Hz聲波作用下的火焰形態及燃燒特征進行了分析。對火焰圖像的分析發現,橫向聲波加劇了渦旋的不穩定運動,聲強迫下的火焰形態可歸結為間歇截斷、偏轉和穩定燃燒三種狀態。火焰幾何尺寸的數值分析表明:間歇截斷和偏轉狀態下的火焰表面高度扭曲皺褶,具有更高的分形維數。對火焰面積、高度和寬度的頻域信號分析表明:在間歇截斷狀態下火焰信號極不穩定,頻域峰值集中在0 ~ 10 Hz之間,聲頻率在火焰寬度信號的頻域分布中始終突出。基于火焰傾角和Richardson數的關系提出了Ri數在聲波作用下的形式,Richardson數分析表明:在50 ~70 Hz之間,火焰對聲波頻率的響應尤為顯著,聲頻高于或低于該段頻率時對火焰的影響存在邊際效應,間歇截斷和偏轉狀態的臨界Ria?1數(聲波作用下的火焰Richardson數的倒數)分別為10.32和2.92。

     

  • 圖  1  實驗裝置示意圖及聲波參數圖. (a)裝置示意圖;(b)聲參數圖

    Figure  1.  Diagram of experimental system and sound parameters: (a) experimental system; (b) sound parameters

    圖  2  無聲波強迫下與聲波強迫下不同直徑油池火焰部分火焰圖像(左、中、右分別為3,4和5 cm直徑油池火焰;a,b,c,d,e序列分別為無聲波,30,50,70和90 Hz聲波)

    Figure  2.  Partial flame images of pool flame under an acoustic force (left, middle, and right pool flames are 3, 4, and 5 cm in diameter, respectively; a, b, c, d, and e sequences are nonacoustic with 30, 50, 70, and 90 Hz acoustic force, respectively)

    圖  3  油池火焰在聲波作用下火焰形態變化示意圖(I、II、III、和 IV分別表示無聲波作用、間歇截斷、偏轉和穩定燃燒的狀態)

    Figure  3.  Schematic diagram of flame shape change with acoustic force (I, II, III, and IV represent the nonacoustic, intermittent, deflective, and stable states, respectively)

    圖  4  火焰圖像二值化處理及火焰面積像素點數. (a)圖像二值化處理;(b)火焰面積像素點數

    Figure  4.  Binarization of flame image and number of flame area pixels: (a) binarization of flame image; (b) number of flame area pixels

    圖  5  不同直徑油池火焰在不同聲頻率下的火焰面積、火焰寬度、火焰高度以及分形維數的平均數值. (a)火焰面積; (b)火焰寬度; (c)火焰高度; (d)分形維數

    Figure  5.  Average flame area, flame width, flame height and fractal of pool flames with different diameters under acoustic wave of different frequencies: (a) flame area; (b) flame width; (c) flame height; (d) fractal dimension

    圖  6  不同直徑油池火焰在聲波強迫下的頻域信號(a、b和c前綴分別表示在30、50和70 Hz聲波作用下;1、2和3后綴分別表示火焰面積、火焰寬度和火焰高度信號)

    Figure  6.  Frequency signals of pool flames with different diameters under an acoustic force (a, b, and c prefixes denote acoustic wave at 30, 50, and 70 Hz, respectively; 1, 2, and 3 suffixes indicate the flame area, flame width, and flame height signal, respectively)

    圖  7  聲波頻率、火焰傾角和Ria?1值之間的關系. (a)不同頻率下的火焰傾角正切值; (b) Ria?1值與火焰傾角正切值的擬合關系; (c)火焰Ria?1

    Figure  7.  Relationship between acoustic frequency, flame angle, and Ria?1: (a) tangent value of flame inclination angle at different frequencies; (b) fitting relationship between Ria?1 and the tangent value of flame inclination angle; (c) flame Ria?1 value

    表  1  不同直徑油池火焰在不同頻率聲波作用下的燃燒狀態

    Table  1.   State of pool flames with different diameters and different frequencies of acoustic force

    Frequencies of acoustic force/HzState of pool flames with different diameters
    3 cm4 cm5 cm
    0
    30
    40
    50
    60
    70
    80
    90
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ye Q H, Zhang C W, Liu L W. Research on application status and development of a new type core-shell structure dry water extinguishing agent. New Chem Mater, 2021, 49(2): 52

    葉喬涵, 張存位, 劉立文. 新型核殼結構干水滅火劑應用現狀與發展趨勢. 化工新型材料, 2021, 49(2):52
    [2] Wang Q, Huang H W, Tang H J, et al. Nonlinear response of buoyant diffusion flame under acoustic excitation. Fuel, 2013, 103: 364 doi: 10.1016/j.fuel.2012.08.008
    [3] Tang T T, Li C Y. Design of fire sonic unmanned aerial vehicle based on residential area fire. J Mach Des, 2020, 37(Suppl 1): 48

    唐甜甜, 李翠玉. 基于住宅區火災的消防聲波無人機設計. 機械設計, 2020, 37(增刊1): 48
    [4] Baillot F, Demare D. Physical mechanisms of a lifted non-premixed flame stabilized in an acoustic field. Combust Sci Technol, 2002, 174(8): 73
    [5] Beisner E, Wiggins N D, Yue K B, et al. Acoustic flame suppression mechanics in a microgravity environment. Microgravity Sci Technol, 2015, 27(3): 141 doi: 10.1007/s12217-015-9422-4
    [6] Hakim L, Schmitt T, Ducruix S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: Influence of the modulation frequency on the flame response. Combust Flame, 2015, 162(10): 3482 doi: 10.1016/j.combustflame.2015.05.022
    [7] Han X S, Yang J F, Mao J K. LES investigation of two frequency effects on acoustically forced premixed flame. Fuel, 2016, 185: 449 doi: 10.1016/j.fuel.2016.08.005
    [8] Vignat G, Lo Schiavo E, de Laera D, et al. Dynamics of spray and swirling flame under acoustic oscillations: A joint experimental and LES investigation. Proc Combust Inst, 2021, 38(4): 6015 doi: 10.1016/j.proci.2020.05.054
    [9] Kypraiou A M, Giusti A, Allison P M, et al. Dynamics of acoustically forced non-premixed flames close to blow-off. Exp Therm Fluid Sci, 2018, 95: 81 doi: 10.1016/j.expthermflusci.2018.01.036
    [10] Xiong C Y, Liu Y H, Xu C S, et al. Extinguishing the dripping flame by acoustic wave. Fire Saf J, 2021, 120: 103109 doi: 10.1016/j.firesaf.2020.103109
    [11] Zong R W, Kang R X, Liu C, et al. Analysis of flame extinguishment and height in low frequency acoustically excited methane jet diffusion flame. Microgravity Sci Technol, 2018, 30(3): 237 doi: 10.1007/s12217-017-9590-5
    [12] Friedman A N, Stoliarov S I. Acoustic extinction of laminar line-flames. Fire Saf J, 2017, 93: 102 doi: 10.1016/j.firesaf.2017.09.002
    [13] Wei Z P. Study on the Influence of Acoustic Waves on Combustion Flame Characteristics [Dissertation]. Beijing: North China Electric Power University, 2019

    魏珠萍. 聲波影響燃燒及燃燒火焰特性的研究[學位論文]. 北京: 華北電力大學, 2019
    [14] Fujisawa N, Iwasaki K, Fujisawa K, et al. Flow visualization study of a diffusion flame under acoustic excitation. Fuel, 2019, 251: 506 doi: 10.1016/j.fuel.2019.04.060
    [15] Niegodajew P, ?ukasiak K, Radomiak H, et al. Application of acoustic oscillations in quenching of gas burner flame. Combust Flame, 2018, 194: 245 doi: 10.1016/j.combustflame.2018.05.007
    [16] Liu D, Lai X, Hu X, et al. Research on on-line evaluation method of state degradation of hydropower unit based on vibration signal. J Hydraul Eng, 2021, 52(4): 461

    劉東, 賴旭, 胡曉, 等. 基于振動信號的水電機組狀態劣化在線評估方法研究. 水利學報, 2021, 52(4):461
    [17] Tieszen S R, Nicolette V F, Gritzo L A, et al. Vortical structures in pool fires: Observation, speculation, and simulation [R/OL]. The DOE Office of Scientific and Technical Information (1996-11-1) [2021-01-08].https://www.osti.gov/biblio/414306-iajdJc/webviewable/
    [18] Hu J J. Studies on the Flame Necking-in Characteristic and Temperature Profile in Developing Area of Pool Fires [Dissertation]. Hefei: University of Science and Technology of China, 2015

    胡郡郡. 油池火火焰頸部特征及發展區溫度分布研究[學位論文]. 合肥: 中國科學技術大學, 2015
    [19] Pretrel H, Suard S, Audouin L. Experimental and numerical study of low frequency oscillatory behaviour of a large-scale hydrocarbon pool fire in a mechanically ventilated compartment. Fire Saf J, 2016, 83: 38 doi: 10.1016/j.firesaf.2016.04.001
    [20] Shen Z L. Experimental and Model Investigation on Mechanism of Reducingnox Emission by Flame and Vortex Interacition with an Acoustic Excitation [Dissertation]. Hangzhou: Zhejiang University of Technology, 2015

    沈忠良. 聲作用下渦與火焰耦合影響NOx生成的實驗與模型研究[學位論文]. 杭州: 浙江工業大學, 2015
    [21] Xu X C, Li X, Huang Z, et al. Jet flame propagation characteristics of methane/air mixture in a large bore constant volume chamber based on MATLAB image processing method. J Shanghai Jiao Tong Univ, 2020, 54(5): 490

    許曉晨, 李翔, 黃忠, 等. 基于MATLAB圖像處理的大缸徑定容彈中甲烷/空氣射流火焰傳播特性. 上海交通大學學報, 2020, 54(5):490
    [22] Tian F. Study on Disturbance Characteristics of Cross Flow to Diffusion Flame [Dissertation]. Guangzhou: South China University of Technology, 2017

    田芳. 橫掠風對擴散火焰的擾動特性研究[學位論文]. 廣州: 華南理工大學, 2017
    [23] Skiba A W, Carter C D, Hammack S D, et al. High-fidelity flame-front wrinkling measurements derived from fractal analysis of turbulent premixed flames with large Reynolds numbers. Proc Combust Inst, 2021, 38(2): 2809 doi: 10.1016/j.proci.2020.06.041
    [24] Carpes C Q, de Bortoli A L. Large eddy simulation of the acoustic of a premixed swirl flame. Comput Fluids, 2019, 182: 1 doi: 10.1016/j.compfluid.2019.02.009
    [25] Majeski A J, Wilson D J, Kostiuk L W. Predicting the length of low-momentum jet diffusion flames in crossflow. Combust Sci Technol, 2004, 176(12): 2001 doi: 10.1080/00102200490514769
    [26] Shang F J, Hu L H, Sun X P, et al. Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation. Appl Energy, 2017, 198: 99 doi: 10.1016/j.apenergy.2017.04.043
    [27] Liu P X. Small-Scale Experiment Study of Crude Oil Boilover Fire Behavior and Hazard Characteristics under Cross Air Flow [Dissertation]. Dongying: China University of Petroleum (Huadong), 2017

    劉鵬翔. 環境風作用下小尺度原油沸溢池火行為及危害特性研究[學位論文]. 東營: 中國石油大學(華東), 2017
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數:  425
  • HTML全文瀏覽量:  271
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-08
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回