<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

NiCo層狀雙氫氧化物負載痕量Pt的催化析氫研究

陳旭芳 李楊 陳榮生 倪紅衛

陳旭芳, 李楊, 陳榮生, 倪紅衛. NiCo層狀雙氫氧化物負載痕量Pt的催化析氫研究[J]. 工程科學學報, 2022, 44(6): 1027-1035. doi: 10.13374/j.issn2095-9389.2021.01.05.003
引用本文: 陳旭芳, 李楊, 陳榮生, 倪紅衛. NiCo層狀雙氫氧化物負載痕量Pt的催化析氫研究[J]. 工程科學學報, 2022, 44(6): 1027-1035. doi: 10.13374/j.issn2095-9389.2021.01.05.003
CHEN Xu-fang, LI Yang, CHEN Rong-sheng, NI Hong-wei. NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction[J]. Chinese Journal of Engineering, 2022, 44(6): 1027-1035. doi: 10.13374/j.issn2095-9389.2021.01.05.003
Citation: CHEN Xu-fang, LI Yang, CHEN Rong-sheng, NI Hong-wei. NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction[J]. Chinese Journal of Engineering, 2022, 44(6): 1027-1035. doi: 10.13374/j.issn2095-9389.2021.01.05.003

NiCo層狀雙氫氧化物負載痕量Pt的催化析氫研究

doi: 10.13374/j.issn2095-9389.2021.01.05.003
基金項目: 國家自然科學基金資助項目(51471122)
詳細信息
    通訊作者:

    E-mail: nihongwei@wust.edu.cn

  • 中圖分類號: O613

NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction

More Information
  • 摘要: 降低鉑的用量,提升鉑基催化劑在堿性環境中的析氫反應性能,是電解水工業化應用的一個關鍵問題。本工作是在三電極體系中,以Pt絲對電極為Pt源,采用簡單易于控制的循環伏安(Cyclic voltammetry, CV)電化學沉積方法,在水熱制備的鎳鈷層狀雙氫氧化物(NiCo-LDHs)上實現了高分散Pt的痕量負載。利用NiCo-LDHs促進水的解離,Pt位點推動H的結合和脫附,有效解決Pt在堿性環境中析氫反應過程動力學滯緩的問題。在1 mol·L?1 KOH溶液中,在Pt負載量為30.4 g·cm?2時,Pt?NiCo-LDHs電極驅動10 mA·cm?2電流密度的過電位僅需要56 mV,塔菲爾斜率僅為43 mV·decade?1,擺脫了Volmer步驟的限制,展現了優異的析氫催化活性。在100 mV的過電位下,Pt?NiCo-LDHs的質量活性比商品化Pt/C電極高5.6倍。另外,Pt?NiCo-LDHs在100 h的恒電流測試中表現出了良好的穩定性。

     

  • 圖  1  NiCo-LDHs/NF(a~b)和Pt?NiCo-LDHs/NF(c~d)的掃描電鏡圖

    Figure  1.  SEM images of NiCo-LDHs (a–b) and Pt?NiCo-LDHs/NF (c–d)

    圖  2  Pt?NiCo-LDHs/NF的低倍透射電子顯微鏡圖(a)、與之相對的選區電子衍射圖(b)、高倍透射電子顯微鏡圖(c),相應的能量色散光譜元素映射分析圖(d~e)

    Figure  2.  TEM images of Pt?NiCo-LDHs (a, c) and corresponding SAED patterns (b), corresponding EDS elemental mapping analysis of Pt?NiCo-LDHs (d–e)

    圖  3  NiCo-LDHs/NF和Pt?NiCo-LDHs/NF的X射線衍射圖譜和X射線光電子能譜分析圖譜。(a) X射線衍射圖譜;(b)X射線光電子能譜全能譜圖;(c) Ni 2p;(d) Co 2p;(e) O 1s及(f) Pt 4f

    Figure  3.  (a) XRD patterns of NiCo-LDHs/NF and Pt?NiCo-LDHs/NF; XPS spectra of (b) the survey scan, (c) Ni 2p, (d) Co 2p, and (e) O 1s for NiCo-LDHs/NF and Pt?NiCo-LDHs/NF; (f) Pt 4f for Pt?NiCo-LDHs

    圖  4  樣品在1 mol·L-1 KOH溶液中的循環伏安曲線圖(a),析氫極化曲線圖(b)及其相對應的塔菲爾斜率圖(c)、電化學阻抗譜圖(d)、單位面積雙電層電容值(e)及Pt?NiCo-LDHs/NF在10 mA cm?2的穩定性測試圖(f)

    Figure  4.  CV curves (a) and polarization curves (b) of samples, and Tafel plots (c), Nyquist plots (d), scan-rate dependence of the mean capacitive currents (e) for different catalysts and Chronoamperometric curves for Pt?NiCo-LDHs (f)

    圖  5  Pt在NiCo-LDHs/NF表面的沉積過程(a),Pt?NiCo-LDHs與Pt/C催化劑關于Pt的質量負載對比圖(b)及質量活性對比圖(c)

    Figure  5.  Pt deposition process on the surface of NiCo-LDHs/NF (a), mass loading comparison diagram (b) and mass activity comparison diagram (c) of Pt?NiCo-LDHs and Pt/C catalysts

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev, 2016, 57: 850 doi: 10.1016/j.rser.2015.12.112
    [2] Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334(6056): 645 doi: 10.1126/science.1209816
    [3] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593
    [4] Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev, 2020, 120(2): 851 doi: 10.1021/acs.chemrev.9b00248
    [5] Chen L, Dong X, Wang Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun, 2016, 7: 11741 doi: 10.1038/ncomms11741
    [6] Koper M T M. A basic solution. Nat Chem, 2013, 5(4): 255 doi: 10.1038/nchem.1600
    [7] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci, 2010, 36(3): 307 doi: 10.1016/j.pecs.2009.11.002
    [8] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998 doi: 10.1126/science.aad4998
    [9] Jiao Y, Zheng Y, Jaroniec M, et al. ChemInform abstract: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform, 2015, 46(25): 2060
    [10] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J Electrochem Soc, 2010, 157(11): B1529 doi: 10.1149/1.3483106
    [11] Conway B E, Jerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochimica Acta, 2000, 45(25-26): 4075 doi: 10.1016/S0013-4686(00)00523-5
    [12] Liu L, Liu Y Y, Liu C G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J Am Chem Soc, 2020, 142(11): 4985 doi: 10.1021/jacs.9b13694
    [13] Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256 doi: 10.1126/science.1211934
    [14] Wang L, Zhu Y H, Zeng Z H, et al. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31: 456 doi: 10.1016/j.nanoen.2016.11.048
    [15] Yin H J, Zhao S L, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430 doi: 10.1038/ncomms7430
    [16] Wang L, Lin C, Huang D K, et al. Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal, 2015, 5(6): 3801 doi: 10.1021/cs501835c
    [17] Xing Z C, Han C, Wang D W, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7(10): 7131 doi: 10.1021/acscatal.7b01994
    [18] Yu X W, Zhao J, Zheng L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett, 2018, 3(1): 237
    [19] Jadhav H S, Lim A C, Roy A, et al. Room-temperature ultrafast synthesis of NiCo-layered double hydroxide as an excellent electrocatalyst for water oxidation. ChemistrySelect, 2019, 4(8): 2409 doi: 10.1002/slct.201900063
    [20] Waghmode B J, Gaikwad A P, Rode C V, et al. Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis. ACS Sustainable Chem Eng, 2018, 6(8): 9649 doi: 10.1021/acssuschemeng.7b04788
    [21] Jiang J, Zhang A L, Li L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445 doi: 10.1016/j.jpowsour.2014.12.085
    [22] Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s
    [23] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 9

    劉佳, 張英華, 黃志安, 等. 三維ZnO/CdS/NiFe層狀雙金屬氫氧化物光電催化氧化甲烷. 工程科學學報, 2021, 43(8):9
    [24] Chen R, Yang C J, Cai W Z, et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett, 2017, 2(5): 1070 doi: 10.1021/acsenergylett.7b00219
    [25] Liu Y, Gokcen D, Bertocci U, et al. Self-terminating growth of platinum films by electrochemical deposition. Science, 2012, 338(6112): 1327 doi: 10.1126/science.1228925
    [26] Liu Y L, Wan L L, Wang J, et al. Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction. Appl Surf Sci, 2020, 509: 144679 doi: 10.1016/j.apsusc.2019.144679
    [27] Zhang B W, Jiang K, Wang H T, et al. Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett, 2019, 19(1): 530 doi: 10.1021/acs.nanolett.8b04466
    [28] Chen G B, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater, 2018, 30(10): 1706279 doi: 10.1002/adma.201706279
    [29] Li D, Zhang B W, Li Y, et al. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem Commun, 2019, 101: 23 doi: 10.1016/j.elecom.2019.01.014
    [30] Zhang B W, Qi Z Y, Wu Z S, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett, 2019, 4(1): 328 doi: 10.1021/acsenergylett.8b02343
    [31] Wang Y, Zhuo H Y, Zhang X, et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy, 2018, 48: 590 doi: 10.1016/j.nanoen.2018.03.080
    [32] Yu F Y, Lang Z L, Yin L Y, et al. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat Commun, 2020, 11: 490 doi: 10.1038/s41467-019-14274-z
    [33] Zhao J Y, Zeng Y, Wang J, et al. Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale, 2020, 12(28): 15393 doi: 10.1039/D0NR01316A
    [34] Bockris J O, Conway B E. The velocity of hydrogen evolution at silver cathodes as a function of hydrogen ion concentration. Trans Faraday Soc, 1952, 48: 724 doi: 10.1039/tf9524800724
  • 加載中
圖(5)
計量
  • 文章訪問數:  543
  • HTML全文瀏覽量:  338
  • PDF下載量:  47
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-05
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-06-25

目錄

    /

    返回文章
    返回