NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction
-
摘要: 降低鉑的用量,提升鉑基催化劑在堿性環境中的析氫反應性能,是電解水工業化應用的一個關鍵問題。本工作是在三電極體系中,以Pt絲對電極為Pt源,采用簡單易于控制的循環伏安(Cyclic voltammetry, CV)電化學沉積方法,在水熱制備的鎳鈷層狀雙氫氧化物(NiCo-LDHs)上實現了高分散Pt的痕量負載。利用NiCo-LDHs促進水的解離,Pt位點推動H的結合和脫附,有效解決Pt在堿性環境中析氫反應過程動力學滯緩的問題。在1 mol·L?1 KOH溶液中,在Pt負載量為30.4 g·cm?2時,Pt?NiCo-LDHs電極驅動10 mA·cm?2電流密度的過電位僅需要56 mV,塔菲爾斜率僅為43 mV·decade?1,擺脫了Volmer步驟的限制,展現了優異的析氫催化活性。在100 mV的過電位下,Pt?NiCo-LDHs的質量活性比商品化Pt/C電極高5.6倍。另外,Pt?NiCo-LDHs在100 h的恒電流測試中表現出了良好的穩定性。
-
關鍵詞:
- 鎳鈷層狀雙層氫氧化物 /
- 析氫反應 /
- 電催化 /
- 水熱法 /
- 電化學沉積
Abstract: Reducing the amount of platinum (Pt) and improving the efficiency of the hydrogen evolution reaction (HER) in alkaline media is a key issue for the industrial production of hydrogen. Unlike HER under acidic conditions, the hydrogen adsorbed-atom (Had) has to be discharged from the water molecule rather than from the hydronium cation (H3O+). Pt catalysts have outstanding H adsorption and desorption free energy but are not conducive to catalyze the dissociation of water, which is the main reason for their hysteresis in alkaline HER. The combination of Pt and a cocatalyst effectively cleave the O–H bonds is an effective strategy to improve the reaction kinetics in the alkaline HER. Currently, in an alkaline electrolyte, non-noble metal hydroxide catalysts are very active for oxygen evolution reaction (OER), especially the Ni–Co hydroxide (NiCoOxHy), which effectively promotes OER owing to its excellent water dissociation ability. In this work, in a three-electrode system, a Pt wire counter electrode was used as the Pt source. Cyclic voltammetry (CV) electrochemical deposition was used to load a trace amount of Pt species onto the NiCo-layered double hydroxides (NiCo-LDHs) prepared using hydrothermal reaction on a nickel foam substrate. NiCo-LDHs can promote the dissociation of water in alkaline media, and Pt sites are beneficial for the binding and desorption of H on the electrode surface. The combination of Pt and NiCo-LDHs effectively paves a new way to enhance the slow kinetics of the hydrogen evolution reaction of Pt in an alkaline medium. The hybrid catalyst Pt?NiCo-LDHs shows considerably improved HER performance, with a small overpotential of 56 mV to drive a typical current density of 10 mA·cm?2 and a low Tafel slope of 43 mV·decade?1 in alkaline media at an ultralow Pt loading of 30.4 g·cm?2. The mass activity of Pt?NiCo-LDHs is 5.6 times higher than that of a commercial Pt/C catalyst with a 100 mV overpotential. Moreover, the Pt?NiCo-LDHs catalyst exhibits outstanding stability after a 100 h test. -
圖 3 NiCo-LDHs/NF和Pt?NiCo-LDHs/NF的X射線衍射圖譜和X射線光電子能譜分析圖譜。(a) X射線衍射圖譜;(b)X射線光電子能譜全能譜圖;(c) Ni 2p;(d) Co 2p;(e) O 1s及(f) Pt 4f
Figure 3. (a) XRD patterns of NiCo-LDHs/NF and Pt?NiCo-LDHs/NF; XPS spectra of (b) the survey scan, (c) Ni 2p, (d) Co 2p, and (e) O 1s for NiCo-LDHs/NF and Pt?NiCo-LDHs/NF; (f) Pt 4f for Pt?NiCo-LDHs
圖 4 樣品在1 mol·L-1 KOH溶液中的循環伏安曲線圖(a),析氫極化曲線圖(b)及其相對應的塔菲爾斜率圖(c)、電化學阻抗譜圖(d)、單位面積雙電層電容值(e)及Pt?NiCo-LDHs/NF在10 mA cm?2的穩定性測試圖(f)
Figure 4. CV curves (a) and polarization curves (b) of samples, and Tafel plots (c), Nyquist plots (d), scan-rate dependence of the mean capacitive currents (e) for different catalysts and Chronoamperometric curves for Pt?NiCo-LDHs (f)
www.77susu.com -
參考文獻
[1] Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev, 2016, 57: 850 doi: 10.1016/j.rser.2015.12.112 [2] Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334(6056): 645 doi: 10.1126/science.1209816 [3] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 [4] Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev, 2020, 120(2): 851 doi: 10.1021/acs.chemrev.9b00248 [5] Chen L, Dong X, Wang Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun, 2016, 7: 11741 doi: 10.1038/ncomms11741 [6] Koper M T M. A basic solution. Nat Chem, 2013, 5(4): 255 doi: 10.1038/nchem.1600 [7] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci, 2010, 36(3): 307 doi: 10.1016/j.pecs.2009.11.002 [8] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998 doi: 10.1126/science.aad4998 [9] Jiao Y, Zheng Y, Jaroniec M, et al. ChemInform abstract: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform, 2015, 46(25): 2060 [10] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J Electrochem Soc, 2010, 157(11): B1529 doi: 10.1149/1.3483106 [11] Conway B E, Jerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochimica Acta, 2000, 45(25-26): 4075 doi: 10.1016/S0013-4686(00)00523-5 [12] Liu L, Liu Y Y, Liu C G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J Am Chem Soc, 2020, 142(11): 4985 doi: 10.1021/jacs.9b13694 [13] Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256 doi: 10.1126/science.1211934 [14] Wang L, Zhu Y H, Zeng Z H, et al. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31: 456 doi: 10.1016/j.nanoen.2016.11.048 [15] Yin H J, Zhao S L, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430 doi: 10.1038/ncomms7430 [16] Wang L, Lin C, Huang D K, et al. Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal, 2015, 5(6): 3801 doi: 10.1021/cs501835c [17] Xing Z C, Han C, Wang D W, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7(10): 7131 doi: 10.1021/acscatal.7b01994 [18] Yu X W, Zhao J, Zheng L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett, 2018, 3(1): 237 [19] Jadhav H S, Lim A C, Roy A, et al. Room-temperature ultrafast synthesis of NiCo-layered double hydroxide as an excellent electrocatalyst for water oxidation. ChemistrySelect, 2019, 4(8): 2409 doi: 10.1002/slct.201900063 [20] Waghmode B J, Gaikwad A P, Rode C V, et al. Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis. ACS Sustainable Chem Eng, 2018, 6(8): 9649 doi: 10.1021/acssuschemeng.7b04788 [21] Jiang J, Zhang A L, Li L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445 doi: 10.1016/j.jpowsour.2014.12.085 [22] Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s [23] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 9劉佳, 張英華, 黃志安, 等. 三維ZnO/CdS/NiFe層狀雙金屬氫氧化物光電催化氧化甲烷. 工程科學學報, 2021, 43(8):9 [24] Chen R, Yang C J, Cai W Z, et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett, 2017, 2(5): 1070 doi: 10.1021/acsenergylett.7b00219 [25] Liu Y, Gokcen D, Bertocci U, et al. Self-terminating growth of platinum films by electrochemical deposition. Science, 2012, 338(6112): 1327 doi: 10.1126/science.1228925 [26] Liu Y L, Wan L L, Wang J, et al. Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction. Appl Surf Sci, 2020, 509: 144679 doi: 10.1016/j.apsusc.2019.144679 [27] Zhang B W, Jiang K, Wang H T, et al. Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett, 2019, 19(1): 530 doi: 10.1021/acs.nanolett.8b04466 [28] Chen G B, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater, 2018, 30(10): 1706279 doi: 10.1002/adma.201706279 [29] Li D, Zhang B W, Li Y, et al. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem Commun, 2019, 101: 23 doi: 10.1016/j.elecom.2019.01.014 [30] Zhang B W, Qi Z Y, Wu Z S, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett, 2019, 4(1): 328 doi: 10.1021/acsenergylett.8b02343 [31] Wang Y, Zhuo H Y, Zhang X, et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy, 2018, 48: 590 doi: 10.1016/j.nanoen.2018.03.080 [32] Yu F Y, Lang Z L, Yin L Y, et al. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat Commun, 2020, 11: 490 doi: 10.1038/s41467-019-14274-z [33] Zhao J Y, Zeng Y, Wang J, et al. Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale, 2020, 12(28): 15393 doi: 10.1039/D0NR01316A [34] Bockris J O, Conway B E. The velocity of hydrogen evolution at silver cathodes as a function of hydrogen ion concentration. Trans Faraday Soc, 1952, 48: 724 doi: 10.1039/tf9524800724 -