Recognition algorithm of hot-rolled strip steel water beam mark based on a semi-supervised learning model of an improved denoising autoencoder
-
摘要: 針對水梁印識別困難且工作量大問題,提出一種基于改進降噪自編碼器半監督學習模型的熱軋帶鋼水梁印識別算法。該算法在降噪自編碼器(Denoising auto-encoder, DAE)的基礎上對編碼層的每一層添加隨機噪聲,在隱藏層后添加分類層,并對數據添加偽標簽,在解碼的同時進行分類訓練,使得DAE具有半監督學習能力。通過提取熱軋帶鋼粗軋出口溫度數據中的溫差特征,用相應特征對模型進行訓練。實驗結果表明,算法能夠準確識別出帶鋼的水梁印,在模型精確度上,與主流分類識別模型對比,提出的模型在帶標簽樣本數量較小時,分類精度相比其他模型高5.0%~10.0%;在帶標簽樣本數量較大時,提出的模型分類精度達到93.8%,現場能夠根據模型的識別結果提高生產效率。Abstract: The water beam mark is a common problem in slab heating, which causes quality defects on strip steel. In hot strip rolling, the heating quality of the slab considerably influences the rolling stability and quality of the finished strip. The water beam mark caused by the heating process and equipment is a common defect in the slab heating. A slab water beam imprint has a great influence on the control precision of the rolling force and thickness of the finished strip. Presently, recognizing the water beam mark is difficult and the workload in the industry is heavy. To solve these problems, this study proposed a recognition algorithm of a hot-rolled strip steel water beam mark based on a semisupervised learning model of an improved denoising autoencoder (DAE). Based on the DAE, random noise was added to each layer of the coding layer, a classification layer was added after a hidden layer, and fake labels were added to the training data. Decoding and classification training are conducted simultaneously. These methods result in the model becoming semisupervised. In this study, we extract the temperature difference of the strip temperature data at the outlet of the roughing mill and use it to train the model. Experimental results showed that the algorithm can accurately recognize the water beam mark of strip steel. The classification accuracy of the proposed model is 5.0%–10.0% higher than other mainstream models when the number of tag proportions is small. When the number of tag proportions is large, the accuracy of the proposed model reaches up to 93.8%. According to the result, the production efficiency can be improved using this model.
-
Key words:
- hot-rolled strip /
- denoising auto-encoder /
- semi-supervised /
- water beam mark /
- furnace
-
圖 6 噪聲對模型準確率影響. (a)輸入層只有均值變化;(b)輸入層只有方差變化;(c)編碼層只有均值變化;(d)編碼層只有方差變化
Figure 6. Influence of noise on model accuracy: (a) only the mean value of the input layer changes; (b) only the variance of the input layer changes; (c) only the mean value of the encode layer changes; (d) only the variance of the encode layer changes
表 1 不同位置添加噪音后在不同標簽占比下的模型精度結果
Table 1. Model accuracy results after adding noise at different layers under different label proportions
% Experiment condition Accuracy when the label proportion is 1% Accuracy when the label proportion is 2% Accuracy when the label proportion is 5% Accuracy when the label proportion is 6% Accuracy when
the label
proportion is 10%Accuracy when
the label
proportion is 33%Accuracy when
the label
proportion is 50%Input layer: no
noise
Encode layer:
no noise73.25 78.80 79.20 80.40 86.00 89.20 91.20 Input layer: add
noise
Encode layer:
no noise73.50 80.00 82.00 82.20 88.60 90.20 92.00 Input layer: no
noise
Encode layer:
add noise67.50 79.80 80.40 81.20 87.20 90.60 91.60 Input layer: add
noise
Encode layer:
add noise75.75 81.20 83.80 83.20 89.40 91.60 93.80 表 2 不同噪聲的對比模型
Table 2. Compare models with different noise
Experiment number The mean of the input layer noise The variance of input layer noise The mean of the encode layer noise The variance of encode layer noise a Variable 1 0 1 b 0 Variable 0 1 c 0 1 Variable 1 d 0 1 0 Variable 表 3 不同標簽占比下不同神經網絡分類精度
Table 3. Classification accuracy of different neural networks under different label proportions
% Model Accuracy when the label proportion is 1% Accuracy when the label proportion is 2% Accuracy when the label proportion is 5% Accuracy when the label proportion is 6% Accuracy when the label proportion is 10% Accuracy when the label proportion is 33% Accuracy when the label proportion is 50% BP 64.20 71.60 77.80 80.80 89.40 91.40 92.00 DBP 69.80 69.00 75.60 81.20 84.20 91.20 92.60 DBN 65.40 77.60 77.20 81.20 89.40 91.40 91.60 LSTM 73.20 74.60 78.00 84.80 93.80 CNN-LSTM 78.80 80.20 87.40 89.80 94.40 Improved-DAE 75.75 81.20 83.60 83.20 89.70 91.60 93.80 表 4 改進降噪自編碼器部分識別結果
Table 4. Partial recognition results of improved DAE
℃ Coil number 1 2 3 4 5 6 7 8 1 # 18.55 12.24 14.13 11.01 12.41 13.39 11.19 16.12 2 # 29.16 12.76 19.78 13.70 15.56 20.98 11.76 45.16 3 # 17.09 7.17 16.24 12.55 10.61 21.48 11.78 25.73 4 # 27.37 9.55 18.01 19.16 13.82 22.96 13.28 34.90 5 # 23.72 10.40 18.38 13.08 13.81 22.76 14.91 35.66 www.77susu.com -
參考文獻
[1] Lu Z Q, Hong Z, Ji L. Research on simulator of walking beam in billet heating furnace. Manuf Autom, 2017, 39(4): 135 doi: 10.3969/j.issn.1009-0134.2017.04.034魯照權, 洪志, 季亮. 鋼坯加熱爐步進梁模擬器研究. 制造業自動化, 2017, 39(4):135 doi: 10.3969/j.issn.1009-0134.2017.04.034 [2] Qi F S, Wang Z S, Li B K. Slab heating uniformity based on multi-field coupling heat transfer in reheating furnace. J Northeast Univ Nat Sci, 2019, 40(10): 1413 doi: 10.12068/j.issn.1005-3026.2019.10.009齊鳳升, 王子松, 李寶寬. 基于加熱爐多場耦合傳熱的板坯加熱均勻性. 東北大學學報(自然科學版), 2019, 40(10):1413 doi: 10.12068/j.issn.1005-3026.2019.10.009 [3] Xiao N, Hu W C, Jiang H, et al. Numerical simulation of water beam black imprint in walking beam reheating furnace. Ind Furn, 2013, 35(5): 40 doi: 10.3969/j.issn.1001-6988.2013.05.012肖楠, 胡文超, 江華, 等. 步進梁式加熱爐水梁黑印數值模擬. 工業爐, 2013, 35(5):40 doi: 10.3969/j.issn.1001-6988.2013.05.012 [4] Chen G F. Analysis and improvement for water beam mark during heavy plate rolling // Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 8陳國鋒. 厚板軋機關于水梁印問題的分析及優化 //第十二屆中國鋼鐵年會論文集. 北京, 2019: 8 [5] Sun Z B. Simulation research on heating furnace water beam's black mark. Ind Heat, 2016, 45(5): 30 doi: 10.3969/j.issn.1002-1639.2016.05.009孫志斌. 加熱爐水梁黑印模擬研究. 工業加熱, 2016, 45(5):30 doi: 10.3969/j.issn.1002-1639.2016.05.009 [6] Wang Q. Quality analysis system of 1780 mm hot rolling mill. Metall Ind Autom, 2006, 30(3): 17 doi: 10.3969/j.issn.1000-7059.2006.03.004王強. 1780熱軋質量分析系統. 冶金自動化, 2006, 30(3):17 doi: 10.3969/j.issn.1000-7059.2006.03.004 [7] Zhu Y B, Zhang F, Zhang Y J, et al. Particle swarm optimized neural network for strip crown prediction model research. Metall Ind Autom, 2019, 43(2): 11朱永波, 張飛, 張勇軍, 等. 基于粒子群優化的帶鋼凸度神經網絡預測模型研究. 冶金自動化, 2019, 43(2):11 [8] Li F J, Liu H F, Zhang X. On-line identification of roll eccentricity based on PSO-RBF neural network. J Iron Steel Res, 2017, 29(11): 906李灃驥, 劉鴻飛, 張興. 基于PSO-RBF神經網絡的軋輥偏心在線辨識. 鋼鐵研究學報, 2017, 29(11):906 [9] Cai Z X. Application of Artificial Intelligence in metallurgy automation. Metall Ind Autom, 2015, 39(1): 1 doi: 10.3969/j.issn.1000-7059.2015.01.001蔡自興. 人工智能在冶金自動化中的應用. 冶金自動化, 2015, 39(1):1 doi: 10.3969/j.issn.1000-7059.2015.01.001 [10] Wei L X, Wei X Y, Sun H, et al. Prediction of aluminum hot rolling force based on deep network. Chin J Nonferrous Met, 2018, 28(10): 2070魏立新, 魏新宇, 孫浩, 等. 基于深度網絡訓練的鋁熱軋軋制力預報. 中國有色金屬學報, 2018, 28(10):2070 [11] Peng L G, Wang D G, Li J, et al. Data-driven adaptive setting algorithm for coiling temperature model parameter. Chin J Eng, 2020, 42(6): 778彭良貴, 王登剛, 李杰, 等. 數據驅動的卷取溫度模型參數即時自適應設定算法. 工程科學學報, 2020, 42(6):778 [12] Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning. J Iron Steel Res, 2019, 31(9): 805馬威, 李維剛, 趙云濤, 等. 基于深度學習的熱連軋軋制力預測. 鋼鐵研究學報, 2019, 31(9):805 [13] Lin W L, Ding X F, Shuang Y H. Prediction on rolling force of oblique rolling piercing based on BP neural network. Forg Stamp Technol, 2018, 43(10): 175林偉路, 丁小鳳, 雙遠華. BP神經網絡對斜軋穿孔軋制力的預測. 鍛壓技術, 2018, 43(10):175 [14] Liu J H, Wang G X, Liu Y K. Prediction of rolling force based on grey theory and neural network. Forg Stamp Technol, 2015, 40(10): 126劉杰輝, 王桂霞, 劉永康. 基于灰色理論和神經網絡的軋制力預測. 鍛壓技術, 2015, 40(10):126 [15] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372 [16] Wu K, Liu X Z, Zhang X X, et al. Feature extraction of hot strip rolling data based on PCA-DBN. Metall Ind Autom, 2020, 44(3): 21武凱, 劉新忠, 張笑雄, 等. 基于PCA-DBN的熱連軋數據特征提取. 冶金自動化, 2020, 44(3):21 [17] Rasmus A, Berglund M, Honkala M, et al. Semi-supervised learning with ladder networks. Adv Neural Info Process Syst, 2015, 28: 3546 [18] Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks // International Conference on Learning Representations. San Juan, 2016 [19] Hinton G E, Zemel R S. Autoencoders, minimum description length, and Helmholtz free energy. Adv Neural Inf Process Syst, 1994, 6: 3 [20] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders // Proceedings of the 25th International Conference on Machine Learning. Helsinki, 2008: 1096 [21] Pezeshki M, Fan L, Brakel P, et al. Deconstructing the ladder network architecture // International Conference on Machine Learning. New York, 2016: 2368 [22] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504 doi: 10.1126/science.1127647 [23] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735 [24] Liu Y, Gao Z Y, Zhou X M, et al. Industrial data-driven intelligent forecast for chatter of cold rolling of thin strip with LSTM recurrent neural network. J Mech Eng, 2020, 56(11): 121 doi: 10.3901/JME.2020.11.121劉陽, 郜志英, 周曉敏, 等. 工業數據驅動下薄板冷軋顫振的LSTM智能預報. 機械工程學報, 2020, 56(11):121 doi: 10.3901/JME.2020.11.121 [25] Zhang P, Yang T, Liu Y N, et al. Feature extraction and prediction of QAR data based on CNN-LSTM. Appl Res Comput, 2019, 36(10): 2958張鵬, 楊濤, 劉亞楠, 等. 基于CNN-LSTM的QAR數據特征提取與預測. 計算機應用研究, 2019, 36(10):2958 [26] Lu J X, Zhang Q P, Yang Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Autom Electr Power Syst, 2019, 43(8): 131 doi: 10.7500/AEPS20181012004陸繼翔, 張琪培, 楊志宏, 等. 基于CNN-LSTM混合神經網絡模型的短期負荷預測方法. 電力系統自動化, 2019, 43(8):131 doi: 10.7500/AEPS20181012004 [27] Jia C Y, Kang K X, Gao W, et al. Fault prediction of electro-hydraulic servo valve based on CNN+LSTM neural network. Chin Hydraul Pneum, 2020(12): 173 doi: 10.11832/j.issn.1000-4858.2020.12.027賈春玉, 康凱旋, 高偉, 等. 基于CNN+LSTM神經網絡的電液伺服閥故障預測. 液壓與氣動, 2020(12):173 doi: 10.11832/j.issn.1000-4858.2020.12.027 -