[1] |
Zhu B H. Study on the Gas-Liquid Two Phase Flow and Dehydrogenation Behavior in RH Vacuum Refining Process [Dissertation]. Chongqing: Chongqing University, 2017朱博洪. RH真空精煉過程的氣液兩相流動及脫氫行為研究[學位論文]. 重慶: 重慶大學, 2017
|
[2] |
Karouni F, Wynne B P, Talamantes-Silva J, et al. Hydrogen degassing in a vacuum arc degasser using a three-phase eulerian method and discrete population balance model. Steel Res Int, 2018, 89(5): 1700550 doi: 10.1002/srin.201700550
|
[3] |
Yu S, Miettinen J, Louhenkilpi S. Modeling study of nitrogen removal from the vacuum tank degasser. Steel Res Int, 2014, 85(9): 1393 doi: 10.1002/srin.201300262
|
[4] |
Kleimt B, K?hle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scand J Metall, 2000, 29(5): 194 doi: 10.1034/j.1600-0692.2000.d01-23.x
|
[5] |
Steneholm K, Andersson M, Tilliander A, et al. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak, 2013, 40(3): 199 doi: 10.1179/1743281212Y.0000000029
|
[6] |
Ende M A, Kim Y M, Cho M K, et al. A kinetic model for the ruhrstahl heraeus (RH) degassing process. Metall Mater Trans B, 2011, 42(3): 477 doi: 10.1007/s11663-011-9495-4
|
[7] |
Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
|
[8] |
You Z M, Cheng G G, Wang X C, et al. Mathematical model for decarburization of ultra-low carbon steel in single snorkel refining furnace. Metall Mater Trans B, 2015, 46(1): 459 doi: 10.1007/s11663-014-0182-0
|
[9] |
Huang Y, Cheng G G, Wang Q M, et al. Mathematical model for decarburization of ultralow carbon steel during RH treatment. Ironmak Steelmak, 2020, 47(6): 655 doi: 10.1080/03019233.2019.1567999
|
[10] |
Zhang G L, Cheng G G, Dai W X, et al. Study on dehydrogenation behaviour of molten steel in single snorkel refining furnace (SSRF) by a mathematical model. Ironmak Steelmak, 2020, 48(8): 909
|
[11] |
Geng D Q, Lei H, Liu A H, et al. Physical simulation for mixing and mass transfer characteristics during RH vacuum refining process // The 9thVacuum Metallurgy and Surface Engineering Conference. Shenyang, 2009: 164
|
[12] |
Kitamura S Y, Miyamoto K I, Tsujino R. The evaluation of gas-liquid reaction rate at bath surface by the gas adsorption and desorption tests. Tetsu-to-Hagane, 1994, 80(2): 101 doi: 10.2355/tetsutohagane1955.80.2_101
|
[13] |
Maruoka N, Lazuardi F, Nogami H, et al. Effect of bottom bubbling conditions on surface reaction rate in oxygen–water system. ISIJ Int, 2010, 50(1): 89 doi: 10.2355/isijinternational.50.89
|
[14] |
Maruoka N, Lazuardi F, Maeyama T, et al. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int, 2011, 51(2): 236 doi: 10.2355/isijinternational.51.236
|
[15] |
Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part I. Physical modeling. Metall Mater Trans B, 2000, 31(6): 1447
|
[16] |
Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B, 2000, 31(6): 1457
|
[17] |
Kim Y T, Yi K W. Effects of the ultrasound treatment on reaction rates in the RH processor water model system. Met Mater Int, 2019, 25(1): 238 doi: 10.1007/s12540-018-0160-1
|
[18] |
Schneider S, Xie Y K, Oeters F. Mass transfer of dissolved gas from a liquid into a rising bubble swarm. Steel Res, 1991, 62(7): 296 doi: 10.1002/srin.199101299
|
[19] |
Brennen C E. Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2014
|
[20] |
Yu H M. Refining Technology of Molten Steel in Electric Furnace. Beijing: Metallurgical Industry Press, 2010俞海明. 電爐鋼水的爐外精煉技術. 北京: 冶金工業出版社, 2010
|
[21] |
Li J H. On mass transfer of oxygen in water. Guangdong Chem Ind, 2014, 41(3): 69 doi: 10.3969/j.issn.1007-1865.2014.03.034李軍宏. 氧在水中傳質過程的探討. 廣東化工, 2014, 41(3):69 doi: 10.3969/j.issn.1007-1865.2014.03.034
|
[22] |
Lü Y Q, Zheng S L, Wang S N, et al. Structure and diffusivity of oxygen in concentrated alkali-metal hydroxide solutions: A molecular dynamics simulation study. Acta Phys Chimica Sin, 2015, 31(6): 1045 doi: 10.3866/PKU.WHXB201504071
|
[23] |
Higuchi Y, Shirota Y. Effect of stirring condition and bath shape on degassing behavior in water model. Tetsu-to-Hagane, 2000, 86(11): 748 doi: 10.2355/tetsutohagane1955.86.11_748
|
[24] |
Sakaguchi K, Ito K. Measurement of the volumetric mass transfer coefficient of gas-stirred vessel under reduced pressure. ISIJ Int, 1995, 35(11): 1348 doi: 10.2355/isijinternational.35.1348
|
[25] |
Sano M, Mori K. Circulating flow and mixing time in a molten metal bath with inert gas injection. Tetsu-to-Hagane, 1982, 68(16): 2451 doi: 10.2355/tetsutohagane1955.68.16_2451
|
[26] |
Karouni F, Wynne B P, Talamantes-Silva J, et al. A parametric study on the effects of process conditions on dehydrogenation, wall shear and slag entrainment in the vacuum arc degasser using mathematical modelling. ISIJ Int, 2018, 58(9): 1679 doi: 10.2355/isijinternational.ISIJINT-2018-254
|