<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

真空條件下鋼液脫氣過程的模擬研究

張國磊 成國光 代衛星 張旭 姜新巖

張國磊, 成國光, 代衛星, 張旭, 姜新巖. 真空條件下鋼液脫氣過程的模擬研究[J]. 工程科學學報, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002
引用本文: 張國磊, 成國光, 代衛星, 張旭, 姜新巖. 真空條件下鋼液脫氣過程的模擬研究[J]. 工程科學學報, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002
ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002
Citation: ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering, 2022, 44(8): 1324-1330. doi: 10.13374/j.issn2095-9389.2021.01.01.002

真空條件下鋼液脫氣過程的模擬研究

doi: 10.13374/j.issn2095-9389.2021.01.01.002
基金項目: 國家自然科學基金資助項目(51674024, 51874034)
詳細信息
    通訊作者:

    E-mail: chengguoguang@metall.ustb.edu.cn

  • 中圖分類號: TF135

Simulation research on the degassing process of molten steel in a vacuum

More Information
  • 摘要: 基于相似的動力學機理,利用水溶液中溶解氧的去除過程模擬了鋼液的真空脫氣行為. 在負壓25 kPa條件下發現,容器壁面或測氧探頭表面會析出大量細小氣泡,這一現象與以往脫氣數學模型假設的內部脫氣反應非常類似;為了驗證內部脫氣位點的存在,通過引入機械攪拌,對溶池表面和內部脫氣速率進行了分析計算. 實驗結果表明,在整個脫氣過程中溶池表面脫氣速率很低,內部脫氣位點析出的氣泡會極大地提高溶解氧的去除速率,尤其當真空壓力為25 kPa時,其脫氣速率約為自由表面的脫氣速率的10倍,但內部反應僅局限于脫氣的初始階段,即高溶解氧濃度范圍內. 另外,水溶液中溶解氧的去除為一級反應過程,其體積傳質系數(k · A · V?1)為常數,因此可以利用溶解氧在水溶液中的去除過程模擬鋼液的真空脫氣行為. 為了描述真空壓力和吹氬流量對k · A · V?1的影響,引入攪拌動能密度(ε)的概念,通過線性回歸得到了lg (k · A · V?1)與lg ε之間的函數關系,并與以往的模擬研究進行了對比.

     

  • 圖  1  實驗裝置示意圖

    Figure  1.  Schematic diagram of experimental apparatus

    圖  2  負壓下溶解氧隨時間的變化

    Figure  2.  Variation of dissolved oxygen concentration with time under vacuum pressure

    圖  3  不同壓力下溶氧儀探頭表面氣泡的析出過程. (a) Pv=101 kPa; (b) Pv=75 kPa; (c) Pv=50 kPa; (d) Pv=25 kPa

    Figure  3.  Bubble precipitation process from the surface of DO probe with different vacuum pressures: (a) Pv = 101 kPa; (b) Pv = 75 kPa; (c) Pv = 50 kPa; (d) Pv = 25 kPa

    圖  4  相同轉速下真空壓力對溶解氧的影響

    Figure  4.  Effect of vacuum pressure on dissolved oxygen concentration at a constant rotating speed

    圖  5  真空壓力對溶池表面和內部脫氣平均脫氣速率的影響

    Figure  5.  Effect of vacuum pressure on the average degassing rate at the bath surface and inner site

    圖  6  真空壓力對溶解氧濃度的影響

    Figure  6.  Effect of vacuum pressure on dissolved oxygen concentration

    圖  7  真空壓力下相對溶解氧濃度隨時間的變化

    Figure  7.  Variations of relative dissolved oxygen concentration with time under vacuum pressure

    圖  8  不同負壓下吹氬流量與體積傳質系數的函數關系

    Figure  8.  Relationship between argon flow rate and volumetric mass transfer coefficient under reduced pressure

    圖  9  攪拌動能密度對體積傳質系數的影響

    Figure  9.  Effect of stirring power density on the volumetric mass transfer coefficient

    圖  10  真空精煉脫氫過程中數學模型預測的體積傳質系數

    Figure  10.  Prediction of volumetric mass transfer coefficient using mathematical models in vacuum refining process

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu B H. Study on the Gas-Liquid Two Phase Flow and Dehydrogenation Behavior in RH Vacuum Refining Process [Dissertation]. Chongqing: Chongqing University, 2017

    朱博洪. RH真空精煉過程的氣液兩相流動及脫氫行為研究[學位論文]. 重慶: 重慶大學, 2017
    [2] Karouni F, Wynne B P, Talamantes-Silva J, et al. Hydrogen degassing in a vacuum arc degasser using a three-phase eulerian method and discrete population balance model. Steel Res Int, 2018, 89(5): 1700550 doi: 10.1002/srin.201700550
    [3] Yu S, Miettinen J, Louhenkilpi S. Modeling study of nitrogen removal from the vacuum tank degasser. Steel Res Int, 2014, 85(9): 1393 doi: 10.1002/srin.201300262
    [4] Kleimt B, K?hle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scand J Metall, 2000, 29(5): 194 doi: 10.1034/j.1600-0692.2000.d01-23.x
    [5] Steneholm K, Andersson M, Tilliander A, et al. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak, 2013, 40(3): 199 doi: 10.1179/1743281212Y.0000000029
    [6] Ende M A, Kim Y M, Cho M K, et al. A kinetic model for the ruhrstahl heraeus (RH) degassing process. Metall Mater Trans B, 2011, 42(3): 477 doi: 10.1007/s11663-011-9495-4
    [7] Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [8] You Z M, Cheng G G, Wang X C, et al. Mathematical model for decarburization of ultra-low carbon steel in single snorkel refining furnace. Metall Mater Trans B, 2015, 46(1): 459 doi: 10.1007/s11663-014-0182-0
    [9] Huang Y, Cheng G G, Wang Q M, et al. Mathematical model for decarburization of ultralow carbon steel during RH treatment. Ironmak Steelmak, 2020, 47(6): 655 doi: 10.1080/03019233.2019.1567999
    [10] Zhang G L, Cheng G G, Dai W X, et al. Study on dehydrogenation behaviour of molten steel in single snorkel refining furnace (SSRF) by a mathematical model. Ironmak Steelmak, 2020, 48(8): 909
    [11] Geng D Q, Lei H, Liu A H, et al. Physical simulation for mixing and mass transfer characteristics during RH vacuum refining process // The 9thVacuum Metallurgy and Surface Engineering Conference. Shenyang, 2009: 164
    [12] Kitamura S Y, Miyamoto K I, Tsujino R. The evaluation of gas-liquid reaction rate at bath surface by the gas adsorption and desorption tests. Tetsu-to-Hagane, 1994, 80(2): 101 doi: 10.2355/tetsutohagane1955.80.2_101
    [13] Maruoka N, Lazuardi F, Nogami H, et al. Effect of bottom bubbling conditions on surface reaction rate in oxygen–water system. ISIJ Int, 2010, 50(1): 89 doi: 10.2355/isijinternational.50.89
    [14] Maruoka N, Lazuardi F, Maeyama T, et al. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int, 2011, 51(2): 236 doi: 10.2355/isijinternational.51.236
    [15] Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part I. Physical modeling. Metall Mater Trans B, 2000, 31(6): 1447
    [16] Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B, 2000, 31(6): 1457
    [17] Kim Y T, Yi K W. Effects of the ultrasound treatment on reaction rates in the RH processor water model system. Met Mater Int, 2019, 25(1): 238 doi: 10.1007/s12540-018-0160-1
    [18] Schneider S, Xie Y K, Oeters F. Mass transfer of dissolved gas from a liquid into a rising bubble swarm. Steel Res, 1991, 62(7): 296 doi: 10.1002/srin.199101299
    [19] Brennen C E. Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2014
    [20] Yu H M. Refining Technology of Molten Steel in Electric Furnace. Beijing: Metallurgical Industry Press, 2010

    俞海明. 電爐鋼水的爐外精煉技術. 北京: 冶金工業出版社, 2010
    [21] Li J H. On mass transfer of oxygen in water. Guangdong Chem Ind, 2014, 41(3): 69 doi: 10.3969/j.issn.1007-1865.2014.03.034

    李軍宏. 氧在水中傳質過程的探討. 廣東化工, 2014, 41(3):69 doi: 10.3969/j.issn.1007-1865.2014.03.034
    [22] Lü Y Q, Zheng S L, Wang S N, et al. Structure and diffusivity of oxygen in concentrated alkali-metal hydroxide solutions: A molecular dynamics simulation study. Acta Phys Chimica Sin, 2015, 31(6): 1045 doi: 10.3866/PKU.WHXB201504071
    [23] Higuchi Y, Shirota Y. Effect of stirring condition and bath shape on degassing behavior in water model. Tetsu-to-Hagane, 2000, 86(11): 748 doi: 10.2355/tetsutohagane1955.86.11_748
    [24] Sakaguchi K, Ito K. Measurement of the volumetric mass transfer coefficient of gas-stirred vessel under reduced pressure. ISIJ Int, 1995, 35(11): 1348 doi: 10.2355/isijinternational.35.1348
    [25] Sano M, Mori K. Circulating flow and mixing time in a molten metal bath with inert gas injection. Tetsu-to-Hagane, 1982, 68(16): 2451 doi: 10.2355/tetsutohagane1955.68.16_2451
    [26] Karouni F, Wynne B P, Talamantes-Silva J, et al. A parametric study on the effects of process conditions on dehydrogenation, wall shear and slag entrainment in the vacuum arc degasser using mathematical modelling. ISIJ Int, 2018, 58(9): 1679 doi: 10.2355/isijinternational.ISIJINT-2018-254
  • 加載中
圖(10)
計量
  • 文章訪問數:  592
  • HTML全文瀏覽量:  372
  • PDF下載量:  81
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-01
  • 網絡出版日期:  2021-03-02
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回