Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials
-
摘要: 以過渡金屬硫酸鹽、氫氧化鈉、氨水為原料,通過連續共沉淀–高溫固相法制備了富鋰錳基正極材料Li1.17Ni0.33Mn0.5O2。對其進行了包括微觀形貌、宏觀形貌、晶體結構、電化學性能等方面的表征,研究了前驅體烘干溫度對于粒度較小前驅體的宏觀形貌及鋰化后正極材料的微觀形貌和電化學性能的影響。結果表明,烘干溫度較高的前驅體在烘干后出現了明顯了宏觀燒結現象,鋰化并涂布后出現了明顯的顆粒;烘干溫度較低的前驅體在烘干后并未出現宏觀燒結現象,鋰化并涂布后未出現明顯的顆粒。在電化學性能方面,前驅體烘干溫度較高的正極材料在經歷50個循環后,可逆比容量只剩下85%,下降比較明顯;前驅體烘干溫度較低的正極材料在經歷了50個循環后,可逆比容量未出現明顯下降。Abstract: With the gradually increasing consumption of coal, oil, and natural gas and the increasing environmental pollution, recyclable secondary energy has become crucial to solving energy and environmental problems. Lithium-ion batteries have penetrated into all aspects of life. Its high energy density, high voltage platform, long life, and environment-friendly characteristics make it widely in-demand. Lithium-ion batteries are used in devices such as mobile phones, tablet computers, and electric vehicles, in which requirements of energy density, rate, and cycle performance are high. The high-capacity lithium-rich material can provide a reversible specific capacity higher than 250 mA·h·g–1 and an energy density of up to 600 W·h·kg–1, making it a positive electrode material. Being a scarce and strategic resource, the price of cobalt has considerably increased. The price fluctuation of cobalt directly affects the cost of the full battery. Drying conditions have a minor effect on most cathode materials and precursors and do not affect the size, morphology, and elemental distribution of their precursors. Thus, virtually no one has explored the effects of such drying conditions. Herein, we studied the drying conditions of cobalt-free lithium-rich cathode materials and explored the influence of drying condition on the morphology and electrochemical performance of cathode materials. Using sodium hydroxide, which is a transition metal sulfate, and ammonia as raw materials, a lithium-rich manganese-based cathode material (Li1.17Ni0.33Mn0.5O2) was prepared via coprecipitation followed by sintering at 900 ℃. The influence of the precursor drying temperature on the macro and micro morphology and electrochemical performance was studied. The results show that the precursor displays a clear macro sintering phenomenon, and particles appear after lithiation at a higher drying temperature. The precursor with the lower drying temperature did not display a macro sintering phenomenon, and no obvious particles appeared after lithiation. After 50 cycles, the remaining capacity of the high drying temperature was only 85%, which is a significant drop. The cathode material with the lower drying temperature did not decrease significantly in capacity after 50 cycles.
-
Key words:
- cathode material /
- precursor /
- granularity /
- drying /
- electrochemical performance
-
表 1 不同樣品的Rietveld精修結果表
Table 1. Summary of Rietveld refinement results
Sample a/nm c/nm I(003)/I(104) NiLi Bragg R Rp Rwp χ2 LLO1 0.28669 1.42566 2.01 2.87% 0.77 1.96 2.79 1.748 LLO2 0.28642 1.42382 2.40 3.04% 1.02 2.15 2.98 1.795 www.77susu.com -
參考文獻
[1] Guo H. Recent development of lithium-rich layered oxides. Chin J Power Sources, 2018, 42(11): 1736 doi: 10.3969/j.issn.1002-087X.2018.11.045郭慧. 層狀富鋰材料研究進展. 電源技術, 2018, 42(11):1736 doi: 10.3969/j.issn.1002-087X.2018.11.045 [2] Chen Y F, Li Y J, Zheng C M, et al. Research development on lithium rich layered oxide cathode materials. J Inorg Mater, 2017, 32(8): 792 doi: 10.15541/jim20160563陳宇方, 李宇杰, 鄭春滿, 等. 富鋰層狀氧化物正極材料研究進展. 無機材料學報, 2017, 32(8):792 doi: 10.15541/jim20160563 [3] Wu Y F, Bai L F, Wang P F, et al. Research progress of cathode materials for Li-ion battery. Chin J Power Sources, 2019, 43(9): 1547 doi: 10.3969/j.issn.1002-087X.2019.09.038吳怡芳, 白利鋒, 王鵬飛, 等. 鋰離子電池正極材料研究. 電源技術, 2019, 43(9):1547 doi: 10.3969/j.issn.1002-087X.2019.09.038 [4] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827 [5] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1 [6] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0 [7] Li J W, Li Y, Ma P H. A facile method to improve electrochemical performances of nickel-rich cathode material Li(Ni0.6Co0.2Mn0.2)O2 by blending with solid electrolyte. Mater Res Express, 2019, 6(6): 066314 doi: 10.1088/2053-1591/ab1044 [8] Ashraf N, Isa khan M, Majid A, et al. A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chin J Phys, 2020, 66: 246 doi: 10.1016/j.cjph.2020.03.035 [9] Shunmugasundaram R, Senthil Arumugam R, Dahn J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem Mater, 2015, 27(3): 757 doi: 10.1021/cm504583y [10] Manthiram A, Knight J C, Myung S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv Energy Mater, 2016, 6(1): 1501010 doi: 10.1002/aenm.201501010 [11] Liu L H, Li M C, Chu L H, et al. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog Mater Sci, 2020, 111: 100655 doi: 10.1016/j.pmatsci.2020.100655 [12] Zhang K, Li B, Zuo Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem Energy Rev, 2019, 2(4): 606 doi: 10.1007/s41918-019-00049-z [13] Zuo Y X, Li B, Jiang N, et al. A high-capacity O2-Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): 1707255 doi: 10.1002/adma.201707255 [14] Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: Structures, capacity origin mechanisms and modifications. Prog Chem, 2017, 29(4): 373 doi: 10.7536/PC161019張寧, 厲英. 富鋰層狀氧化物正極材料: 結構、容量產生機理及改性. 化學進展, 2017, 29(4):373 doi: 10.7536/PC161019 [15] Jiang W J, Zhang C X, Feng Y Z, et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Mater, 2020, 32: 37 doi: 10.1016/j.ensm.2020.07.035 [16] Zhang C X, Feng Y Z, Wei B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy, 2020, 75: 104995 doi: 10.1016/j.nanoen.2020.104995 [17] Xie D J, Li G S, Li Q, et al. Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochimica Acta, 2016, 196: 505 doi: 10.1016/j.electacta.2016.02.210 [18] Eum D, Kim B, Kim S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater, 2020, 19(4): 419 doi: 10.1038/s41563-019-0572-4 [19] Chen G R, An J, Meng Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57: 157 doi: 10.1016/j.nanoen.2018.12.049 [20] Yi T F, Han X, Yang S Y, et al. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08?xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater, 2016, 59(8): 618 doi: 10.1007/s40843-016-5097-7 [21] Ye D L, Wang B, Chen Y, et al. Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A, 2014, 2(44): 18767 doi: 10.1039/C4TA03692A [22] Zhang N, Zaker N, Li H Y, et al. Cobalt-free nickel-rich positive electrode materials with a core–shell structure. Chem Mater, 2019, 31(24): 10150 doi: 10.1021/acs.chemmater.9b03515 [23] Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1?x(OH)2 mixed hydroxides. Chem Mater, 2010, 22(3): 1015 doi: 10.1021/cm9018309 [24] Zeng Y, Wu W, Gao J H. The Basis and Application of Scanning Electron Microscope and Electron Probe. Shanghai: Shanghai Scientific & Technical Publishers, 2009曾毅, 吳偉, 高建華. 掃描電鏡和電子探針的基礎及應用. 上海: 上海科學技術出版社, 2009 [25] Zheng Z H, Li Q. Refinement of X-ray Polycrystalline Diffraction Data RIETVELD and Introduction to GSAS Software. Beijing: Chinese Building Materials Industry Publication, 2016鄭振環, 李強. X射線多晶衍射數據RIETVELD精修及GSAS軟件入門. 北京: 中國建材工業出版社, 2016 [26] Jiang C H, Yang C Z. X-ray Diffraction Technology and Its Applications. Shanghai: East China University of Science and Technology Press, 2010姜傳海, 楊傳錚. X射線衍射技術及其應用. 上海: 華東理工大學出版社, 2010 [27] Wang Q Y, Chu G, Zhang J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell. Energy Storage Sci Technol, 2018, 7(2): 327王其鈺, 褚賡, 張杰男, 等. 鋰離子扣式電池的組裝, 充放電測量和數據分析. 儲能科學與技術, 2018, 7(2):327 -