<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

前驅體烘干溫度對富鋰錳基正極材料形貌和電化學性能的影響

楊震 厲英 馬培華

楊震, 厲英, 馬培華. 前驅體烘干溫度對富鋰錳基正極材料形貌和電化學性能的影響[J]. 工程科學學報, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
引用本文: 楊震, 厲英, 馬培華. 前驅體烘干溫度對富鋰錳基正極材料形貌和電化學性能的影響[J]. 工程科學學報, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
YANG Zhen, LI Ying, MA Pei-hua. Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials[J]. Chinese Journal of Engineering, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
Citation: YANG Zhen, LI Ying, MA Pei-hua. Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials[J]. Chinese Journal of Engineering, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007

前驅體烘干溫度對富鋰錳基正極材料形貌和電化學性能的影響

doi: 10.13374/j.issn2095-9389.2020.12.31.007
基金項目: 國家自然科學基金資助項目(51834004,51774076,51474057,51904068)
詳細信息
    通訊作者:

    E-mail: liying@mail.neu.edu.cn

  • 中圖分類號: TM912.9

Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials

More Information
  • 摘要: 以過渡金屬硫酸鹽、氫氧化鈉、氨水為原料,通過連續共沉淀–高溫固相法制備了富鋰錳基正極材料Li1.17Ni0.33Mn0.5O2。對其進行了包括微觀形貌、宏觀形貌、晶體結構、電化學性能等方面的表征,研究了前驅體烘干溫度對于粒度較小前驅體的宏觀形貌及鋰化后正極材料的微觀形貌和電化學性能的影響。結果表明,烘干溫度較高的前驅體在烘干后出現了明顯了宏觀燒結現象,鋰化并涂布后出現了明顯的顆粒;烘干溫度較低的前驅體在烘干后并未出現宏觀燒結現象,鋰化并涂布后未出現明顯的顆粒。在電化學性能方面,前驅體烘干溫度較高的正極材料在經歷50個循環后,可逆比容量只剩下85%,下降比較明顯;前驅體烘干溫度較低的正極材料在經歷了50個循環后,可逆比容量未出現明顯下降。

     

  • 圖  1  LLO1和LLO2前驅體及正極材料涂布后宏觀形貌。(a)LLO1前驅體;(b)LLO2前軀體;(c)LLO1正極材料;(d)LLO2正極材料

    Figure  1.  Macro morphology of precursor and cathode materials: (a) precursor of LLO1; (b) precursor of LLO2; (c) cathode material of LLO1; (d) cathode material of LLO2

    圖  2  存在大顆粒的樣品輥壓后宏觀形貌

    Figure  2.  Macroscopic morphology of samples with large particles after rolling

    圖  3  LLO1(a)和LLO2(b)樣品的微觀形貌

    Figure  3.  Electron microprobe images of LLO1 sample (a) and LLO2 sample (b)

    圖  4  LLO1(a)和LLO2(b)樣品XRD圖及精修后圖譜

    Figure  4.  XRD pattern and Rietveld refinement results of LLO1 sample (a) and LLO2 sample (b)

    圖  5  LLO1和LLO2的倍率(a)及循環性能(b)

    Figure  5.  Rate capacity (a) and cycling capacity (b) of LLO1 and LLO2

    表  1  不同樣品的Rietveld精修結果表

    Table  1.   Summary of Rietveld refinement results

    Samplea/nmc/nmI(003)/I(104)NiLiBragg RRpRwpχ2
    LLO10.286691.425662.012.87%0.771.962.791.748
    LLO20.286421.423822.403.04%1.022.152.981.795
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Guo H. Recent development of lithium-rich layered oxides. Chin J Power Sources, 2018, 42(11): 1736 doi: 10.3969/j.issn.1002-087X.2018.11.045

    郭慧. 層狀富鋰材料研究進展. 電源技術, 2018, 42(11):1736 doi: 10.3969/j.issn.1002-087X.2018.11.045
    [2] Chen Y F, Li Y J, Zheng C M, et al. Research development on lithium rich layered oxide cathode materials. J Inorg Mater, 2017, 32(8): 792 doi: 10.15541/jim20160563

    陳宇方, 李宇杰, 鄭春滿, 等. 富鋰層狀氧化物正極材料研究進展. 無機材料學報, 2017, 32(8):792 doi: 10.15541/jim20160563
    [3] Wu Y F, Bai L F, Wang P F, et al. Research progress of cathode materials for Li-ion battery. Chin J Power Sources, 2019, 43(9): 1547 doi: 10.3969/j.issn.1002-087X.2019.09.038

    吳怡芳, 白利鋒, 王鵬飛, 等. 鋰離子電池正極材料研究. 電源技術, 2019, 43(9):1547 doi: 10.3969/j.issn.1002-087X.2019.09.038
    [4] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
    [5] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
    [6] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
    [7] Li J W, Li Y, Ma P H. A facile method to improve electrochemical performances of nickel-rich cathode material Li(Ni0.6Co0.2Mn0.2)O2 by blending with solid electrolyte. Mater Res Express, 2019, 6(6): 066314 doi: 10.1088/2053-1591/ab1044
    [8] Ashraf N, Isa khan M, Majid A, et al. A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chin J Phys, 2020, 66: 246 doi: 10.1016/j.cjph.2020.03.035
    [9] Shunmugasundaram R, Senthil Arumugam R, Dahn J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem Mater, 2015, 27(3): 757 doi: 10.1021/cm504583y
    [10] Manthiram A, Knight J C, Myung S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv Energy Mater, 2016, 6(1): 1501010 doi: 10.1002/aenm.201501010
    [11] Liu L H, Li M C, Chu L H, et al. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog Mater Sci, 2020, 111: 100655 doi: 10.1016/j.pmatsci.2020.100655
    [12] Zhang K, Li B, Zuo Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem Energy Rev, 2019, 2(4): 606 doi: 10.1007/s41918-019-00049-z
    [13] Zuo Y X, Li B, Jiang N, et al. A high-capacity O2-Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): 1707255 doi: 10.1002/adma.201707255
    [14] Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: Structures, capacity origin mechanisms and modifications. Prog Chem, 2017, 29(4): 373 doi: 10.7536/PC161019

    張寧, 厲英. 富鋰層狀氧化物正極材料: 結構、容量產生機理及改性. 化學進展, 2017, 29(4):373 doi: 10.7536/PC161019
    [15] Jiang W J, Zhang C X, Feng Y Z, et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Mater, 2020, 32: 37 doi: 10.1016/j.ensm.2020.07.035
    [16] Zhang C X, Feng Y Z, Wei B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy, 2020, 75: 104995 doi: 10.1016/j.nanoen.2020.104995
    [17] Xie D J, Li G S, Li Q, et al. Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochimica Acta, 2016, 196: 505 doi: 10.1016/j.electacta.2016.02.210
    [18] Eum D, Kim B, Kim S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater, 2020, 19(4): 419 doi: 10.1038/s41563-019-0572-4
    [19] Chen G R, An J, Meng Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57: 157 doi: 10.1016/j.nanoen.2018.12.049
    [20] Yi T F, Han X, Yang S Y, et al. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08?xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater, 2016, 59(8): 618 doi: 10.1007/s40843-016-5097-7
    [21] Ye D L, Wang B, Chen Y, et al. Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A, 2014, 2(44): 18767 doi: 10.1039/C4TA03692A
    [22] Zhang N, Zaker N, Li H Y, et al. Cobalt-free nickel-rich positive electrode materials with a core–shell structure. Chem Mater, 2019, 31(24): 10150 doi: 10.1021/acs.chemmater.9b03515
    [23] Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1?x(OH)2 mixed hydroxides. Chem Mater, 2010, 22(3): 1015 doi: 10.1021/cm9018309
    [24] Zeng Y, Wu W, Gao J H. The Basis and Application of Scanning Electron Microscope and Electron Probe. Shanghai: Shanghai Scientific & Technical Publishers, 2009

    曾毅, 吳偉, 高建華. 掃描電鏡和電子探針的基礎及應用. 上海: 上海科學技術出版社, 2009
    [25] Zheng Z H, Li Q. Refinement of X-ray Polycrystalline Diffraction Data RIETVELD and Introduction to GSAS Software. Beijing: Chinese Building Materials Industry Publication, 2016

    鄭振環, 李強. X射線多晶衍射數據RIETVELD精修及GSAS軟件入門. 北京: 中國建材工業出版社, 2016
    [26] Jiang C H, Yang C Z. X-ray Diffraction Technology and Its Applications. Shanghai: East China University of Science and Technology Press, 2010

    姜傳海, 楊傳錚. X射線衍射技術及其應用. 上海: 華東理工大學出版社, 2010
    [27] Wang Q Y, Chu G, Zhang J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell. Energy Storage Sci Technol, 2018, 7(2): 327

    王其鈺, 褚賡, 張杰男, 等. 鋰離子扣式電池的組裝, 充放電測量和數據分析. 儲能科學與技術, 2018, 7(2):327
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數:  1601
  • HTML全文瀏覽量:  326
  • PDF下載量:  75
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-31
  • 網絡出版日期:  2021-07-02
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回