-
摘要: 以VOCs的催化氧化為主題,利用Web of Science數據庫對4654篇論文進行了數據處理,并通過文獻計量學的方法分析了該主題的發展趨勢與研究現狀。結果表明,近25年期間,VOCs催化氧化相關課題的研究底蘊豐富,發展前景良好,年度發文數量呈指數型增長趨勢。中國是世界上發表VOCs催化氧化為主題的論文最多的國家,占研究總量的34%;研究最深的機構和期刊分別是中國科學院大學(6.66%)和Applied Catalysis B-Environmental(11.68%);Chemistry和Engineering是最受歡迎的科目。此外,對近年來的研究熱詞分析表明,應用于VOCs催化氧化的催化劑中,最熱門的元素是Mn,實驗中最常見的VOCs類底物是甲苯。總結了常見的催化劑物質和VOCs底物,這反映了目前的主要研究方向,也為今后的研究提供了指導。Abstract: Volatile organic compounds (VOCs) have a wide variety and large emissions. VOCs are precursors of ozone and photochemical smog. Some VOCs, such as benzene, toluene, and xylene (BTX), are carcinogenic, teratogenetic, and mutagenic, which can greatly harm the skin, viscera, and nervous system. Researchers estimated in 2013 that 5.5 million people died from air pollution worldwide, thus becoming a serious threat to our daily lives. In the context of massive VOC emissions, the dramatic decline of the regional air quality, and the frequent occurrence of environmental problems, more attention has been paid to the control of VOCs. Governments have formulated a series of regulations and policies to limit the emissions of man-made VOCs. Under the guidance of strict policies, scholars have conducted extensive research on the governance technology of VOCs. Taking the catalytic oxidation of VOCs as the topic in this study, 4654 papers were processed by the Web of Science database, and the development tendency and research status of the topic were analyzed by way of bibliometrics. Results show that the VOC catalytic oxidation has abundant research depth in the past 25 years. The research prospect is found to be admirable and the number of published papers shows an exponential growth trend. China is the largest contributor of publications in the world, accounting for 34% of the total research. The biggest producing institution and journal are the University of Chinese Academy of Sciences (6.66%) and the Applied Catalysis B-Environmental (11.68%), respectively. Chemistry and Engineering are the most popular subjects. In addition, the hot word analysis in recent years shows that the most popular element in the catalyst is Mn, while toluene is the most common substrate of VOCs in the experiment. At the same time, this paper summarizes common catalyst substances and VOC substrates, which consequently reflects the current main research direction and provides guidance for future research.
-
Key words:
- VOCs /
- bibliometric analysis /
- catalyst /
- oxidation /
- development tendency
-
表 1 1996~2020年十大高產科研機構
Table 1. Top 10 productive research institutions from 1996 to 2020
Rank Institution NTI R (TI/%) R (SI/%) R (CI/%) R (FI/%) R (RI/%) 1 Chinese Acad Sci, China 343 1 (6.66) 5 (1.67) 1 (7.59) 1 (4.35) 1 (5.15) 2 Zhejiang Univ, China 85 2 (1.65) 1 (3.24) 2 (1.08) 2 (2.24) 2 (3.17) 3 Beijing Univ Technol, China 58 3 (1.13) 2 (2.46) 8 (0.60) 3 (1.44) 3 (1.84) 4 Tsinghua Univ, China 46 4 (0.89) 6 (1.47) 4 (0.69) 7 (0.86) 4 (1.27) 5 Sun Yat Sen Univ, China 42 5 (0.82) 12 (1.08) 4 (0.69) 4 (1.04) 8 (0.99) 6 Dalian Univ Technol, China 41 6 (0.80) 13 (0.88) 4 (0.69) 5 (0.98) 5 (1.16) 7 Shanghai Jiao Tong Univ, China 37 7 (0.72) 10 (1.18) 8 (0.60) 6 (0.89) 11 (0.91) 8 Xi An Jiao Tong Univ, China 33 8 (0.64) 22 (0.59) 7 (0.65) 11 (0.67) 16 (0.65) 9 Zhejiang Univ Technol, China 33 8 (0.64) 4 (1.77) 24 (0.36) 8 (0.83) 9 (0.96) 10 CSIC, Spain 32 10 (0.62) 3 (1.87) 37 (0.31) 9 (0.80) 13 (0.79) Notes: NTI, number of total publications in a certain institution; R (TI), rank and the percentage of total publications; R (SI), rank and the percentage of single institution's publications; R (CI), rank and the percentage of internationally collaborative institutions' publications; R (FI), rank and the percentage of first-author institutions' publications; R (RI), rank and the percentage of reprint author institutions' publications. 表 2 1996~2020年的十大高產期刊
Table 2. Top 10 productive journals from 1996 to 2020
Rank Journal NTJ TJ/% NTC CCP IF H-index 1 Applied Catalysis B-Environmental 415 11.68 24525 59.10 16.683 205 2 Chemical Engineering Journal 199 5.60 4589 23.06 10.652 172 3 Applied Catalysis A-General 125 3.52 4680 37.44 5.006 192 4 Journal of Hazardous Materials 121 3.40 4122 34.07 9.038 235 5 Catalysis Communications 77 2.17 1964 25.51 3.612 105 6 Industrial & Engineering Chemistry Research 76 2.14 943 12.41 3.573 197 7 Applied Surface Science 58 1.63 726 12.52 6.182 159 8 Environmental Science & Technology 57 1.60 3458 60.67 7.864 345 9 Rsc Advances 56 1.58 611 10.91 3.119 113 10 Chemosphere 55 1.55 1668 30.33 5.778 212 Notes: NTJ, number of total publications in a certain journal; TJ, the percentage of total publications; NTC, number of total citations; CPP, citations per publication; IF, impact factor in 2019; H-index refers to his or her having at most h papers cited at least h times. www.77susu.com -
參考文獻
[1] Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ Int, 2007, 33(5): 694 doi: 10.1016/j.envint.2007.02.011 [2] Ousmane M, Liotta L F, Carlo G D, et al. Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Appl Catal B:Environ, 2011, 101(3-4): 629 doi: 10.1016/j.apcatb.2010.11.004 [3] Dudareva N, Negre F, Nagegowda D A, et al. Plant volatiles: Recent advances and future perspectives. Crit Rev Plant Sci, 2006, 25(5): 417 doi: 10.1080/07352680600899973 [4] Tassi F, Venturi S, Cabassi J, et al. Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes. Appl Geochem, 2015, 56: 37 [5] Tassi F, Capecchiacci F, Buccianti A, et al. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods. Appl Geochem, 2012, 27(1): 115 doi: 10.1016/j.apgeochem.2011.09.023 [6] Montero-Montoya R, López-Vargas R, Arellano-Aguilar O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children. Ann Glob Health, 2018, 84(2): 225 doi: 10.29024/aogh.910 [7] Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos Environ, 2020, 224: 117340 doi: 10.1016/j.atmosenv.2020.117340 [8] Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B:Environ, 1997, 14(1-2): 55 doi: 10.1016/S0926-3373(97)00012-X [9] Zhang L, Peng Y X, Zhang J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin J Catal, 2016, 37(6): 800 doi: 10.1016/S1872-2067(15)61073-7 [10] Amann M, Lutz M. The revision of the air quality legislation in the European Union related to ground-level ozone. J Hazard Mater, 2000, 78(1-3): 41 doi: 10.1016/S0304-3894(00)00216-8 [11] Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today, 2009, 148(1-2): 81 doi: 10.1016/j.cattod.2009.03.007 [12] Belpomme D, Irigaray P, Hardell L, et al. The multitude and diversity of environmental carcinogens. Environ Res, 2007, 105(3): 414 doi: 10.1016/j.envres.2007.07.002 [13] Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos Environ, 2000, 34(12-14): 2063 doi: 10.1016/S1352-2310(99)00460-4 [14] Zang M, Zhao C C, Wang Y Q, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J Saudi Chem Soc, 2019, 23(6): 645 doi: 10.1016/j.jscs.2019.01.004 [15] Li N, Zhang X L, Shi M J, et al. Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy, 2019, 127: 213 doi: 10.1016/j.enpol.2018.12.019 [16] Li G W, Fan Q J, Liu Q, et al. The control technique over the pollution caused by VOCs. J Xi’an Univ Archit &technology, 1998, 30(4): 399李國文, 樊青娟, 劉強, 等. 揮發性有機廢氣(VOCs)的污染控制技術. 西安建筑科技大學學報(自然科學版), 1998, 30(4):399 [17] Yang L X. Study on Temporal-Spatial Characteristic and Control Strategy of Industrial Emissions of Volatile Organic Compounds in China [Dissertation]. Guangzhou: South China University of Technology, 2012楊利嫻. 我國工業源VOCs排放時空分布特征與控制策略研究[學位論文]. 廣州: 華南理工大學, 2012 [18] Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B:Environ, 2010, 100(3-4): 403 doi: 10.1016/j.apcatb.2010.08.023 [19] Zhang S H, You J P, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem Eng J, 2018, 334: 2625 doi: 10.1016/j.cej.2017.11.014 [20] Simayi M, Hao Y F, Li J, et al. Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010—2016. Atmos Environ, 2019, 211: 194 doi: 10.1016/j.atmosenv.2019.04.064 [21] Li J, Zhou Y, Simayi M, et al. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. J Clean Prod, 2019, 214: 224 doi: 10.1016/j.jclepro.2018.12.308 [22] Zhu L L, Shen D K, Luo K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J Hazard Mater, 2020, 389: 122102 doi: 10.1016/j.jhazmat.2020.122102 [23] Ko?odziej A, ?ojewska J. Optimization of structured catalyst carriers for VOC combustion. Catal Today, 2005, 105(3-4): 378 doi: 10.1016/j.cattod.2005.06.029 [24] Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs) — A review. Atmos Environ, 2016, 140: 117 doi: 10.1016/j.atmosenv.2016.05.031 [25] Li M Z, Huang Z H, Kang F Y. Progress of volatile organic compounds control technology. Chem Ind Eng, 2015, 32(3): 2李明哲, 黃正宏, 康飛宇. 揮發性有機物的控制技術進展. 化學工業與工程, 2015, 32(3):2 [26] Zou W X, Gao B, Ok Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere, 2019, 218: 845 doi: 10.1016/j.chemosphere.2018.11.175 [27] Glänzel W. Bibliometrics as a research field: A course on theory and application of bibliometric indicators [R/OL]. Researchgate (2003)[2020-1230].https://www.researchgate.net/publication/242406991_Bibliometrics_as_a_research_field_A_course_on_theory_and_application_of_bibliometric_indicators [28] Hirsch J E. An index to quantify an individual's scientific research output. PNAS, 2005, 102(46): 16569 doi: 10.1073/pnas.0507655102 [29] Xing Y, Guo Z F, Su W, et al. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New J Chem, 2021, 45: 4253 doi: 10.1039/D0NJ05673A [30] Xing Y, Ma Z L, Su W, et al. Analysis of research status of CO2 conversion technology based on bibliometrics. Catalysts, 2020, 10(4): 370 doi: 10.3390/catal10040370 [31] Liebscher H. Economic solutions for compliance to the new European VOC Directive. Prog Org Coat, 2000, 40(1-4): 75 doi: 10.1016/S0300-9440(00)00139-9 [32] Yang Y M, Cui J S, Tong L, et al. Evolution of the definition of volatile organic compounds in the United States and its implications for China. Res Environ Sci, 2017, 30(3): 368楊一鳴, 崔積山, 童莉, 等. 美國VOCs定義演變歷程對我國VOCs環境管控的啟示. 環境科學研究, 2017, 30(3):368 [33] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1 [34] Garfield E. The history and meaning of the journal impact factor. JAMA, 2006, 295(1): 90 doi: 10.1001/jama.295.1.90 [35] Wang Z H, Zhao Y D, Wang B. A bibliometric analysis of climate change adaptation based on massive research literature data. J Clean Prod, 2018, 199: 1072 doi: 10.1016/j.jclepro.2018.06.183 [36] Casta?o M H, Molina R, Moreno S. Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion. J Mol Catal A:Chem, 2015, 398: 358 doi: 10.1016/j.molcata.2015.01.001 [37] Xu Z, Chen J, Cai S C, et al. Biphasic Ag block assisting electron and energy transfer to facilitate photothermal catalytic oxidation of HCHO over manganese oxide. Mater Today Energy, 2019, 14: 100343 doi: 10.1016/j.mtener.2019.100343 [38] Wang J G, Zhang C, Yang S F, et al. Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3?xO4 solid solutions. Catal Sci Technol, 2019, 9(22): 6379 doi: 10.1039/C9CY01791G [39] Hoseini S, Rahemi N, Allahyari S, et al. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J Clean Prod, 2019, 232: 1134 doi: 10.1016/j.jclepro.2019.05.227 [40] Tian M J, Guo X, Dong R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction. Appl Catal B:Environ, 2019, 259: 118018 doi: 10.1016/j.apcatb.2019.118018 [41] Veerapandian S K P, Ye Z P, Giraudon J M, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. J Hazard Mater, 2019, 379: 120781 doi: 10.1016/j.jhazmat.2019.120781 [42] Einaga H, Yamamoto S, Maeda N, et al. Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catal Today, 2015, 242: 287 doi: 10.1016/j.cattod.2014.05.018 [43] Wang Y X, Aghamohammadi S, Li D Y, et al. Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Appl Catal B:Environ, 2019, 244: 438 doi: 10.1016/j.apcatb.2018.11.066 [44] Joung H J, Kim J H, Oh J S, et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci, 2014, 290: 267 doi: 10.1016/j.apsusc.2013.11.066 [45] Wu J C S, Chang T Y. VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today, 1998, 44(1-4): 111 doi: 10.1016/S0920-5861(98)00179-5 [46] Wu J C S, Lin Z A, Tsai F M, et al. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today, 2000, 63(2-4): 419 doi: 10.1016/S0920-5861(00)00487-9 [47] Lin F W, Xiang L, Zhang Z M, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit Rev Environ Sci Technol, 2020: 1 [48] El Assal Z, Ojala S, Pitk?aho S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chem Eng J, 2017, 313: 1010 doi: 10.1016/j.cej.2016.10.139 [49] Rao Z P, Shi G S, Wang Z, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths. Chem Eng J, 2020, 395: 125078 doi: 10.1016/j.cej.2020.125078 [50] Li J W, Zhao P, Liu S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation. Appl Catal A:Gen, 2014, 482: 363 doi: 10.1016/j.apcata.2014.06.013 [51] Busca G, Daturi M, Finocchio E, et al. Transition metal mixed oxides as combustion catalysts: Preparation, characterization and activity mechanisms. Catal Today, 1997, 33(1-3): 239 doi: 10.1016/S0920-5861(96)00112-5 [52] Dissanayake S, Wasalathanthri N, Shirazi Amin A, et al. Mesoporous Co3O4 catalysts for VOC elimination: Oxidation of 2-propanol. Appl Catal A:Gen, 2020, 590: 117366 doi: 10.1016/j.apcata.2019.117366 [53] ?ojewska J, Ko?odziej A, ?ojewski T, et al. Cobalt catalyst deposited on metallic microstructures for VOC combustion: Preparation by non-equilibrium plasma. Catal Commun, 2008, 10(2): 142 doi: 10.1016/j.catcom.2008.07.042 [54] Li Y, Shen W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem Soc Rev, 2014, 43(5): 1543 doi: 10.1039/C3CS60296F [55] Sk?rman B, Grandjean D, Benfield R E, et al. Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal, 2002, 211(1): 119 [56] Zimmer P, Tsch?pe A, Birringer R. Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal, 2002, 205(2): 339 doi: 10.1006/jcat.2001.3461 [57] Li H F, Lu G Z, Dai Q G, et al. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. ACS Appl Mater Interfaces, 2010, 2(3): 838 doi: 10.1021/am900829y [58] Wang Q Y, Yeung K L, Ba?ares M A. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today, 2020, 356: 141 doi: 10.1016/j.cattod.2019.05.016 [59] Rezayati S, Ramazani A. A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds. Tetrahedron, 2020, 76(36): 131382 doi: 10.1016/j.tet.2020.131382 [60] Lin L L, Cheng Y, Cao L M, et al. The characterization and source apportionment of VOCs in Shenzhen during ozone polluted period. China Environ Sci, 2021, 41(8): 3484 doi: 10.3969/j.issn.1000-6923.2021.08.002林理量, 程勇, 曹禮明, 等. 深圳臭氧污染日的VOCs組成與來源特征. 中國環境科學, 2021, 41(8):3484 doi: 10.3969/j.issn.1000-6923.2021.08.002 [61] Dai C H, Zhou Y Y, Peng H, et al. Current progress in remediation of chlorinated volatile organic compounds: A review. J Ind Eng Chem, 2018, 62: 106 doi: 10.1016/j.jiec.2017.12.049 -