<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于協調變量的多機協同打擊制導方法與試驗驗證

唐鐘南 辛宏博 王玉杰 陳清陽 王鵬 楊希祥

唐鐘南, 辛宏博, 王玉杰, 陳清陽, 王鵬, 楊希祥. 基于協調變量的多機協同打擊制導方法與試驗驗證[J]. 工程科學學報, 2022, 44(8): 1396-1405. doi: 10.13374/j.issn2095-9389.2020.12.30.001
引用本文: 唐鐘南, 辛宏博, 王玉杰, 陳清陽, 王鵬, 楊希祥. 基于協調變量的多機協同打擊制導方法與試驗驗證[J]. 工程科學學報, 2022, 44(8): 1396-1405. doi: 10.13374/j.issn2095-9389.2020.12.30.001
TANG Zhong-nan, XIN Hong-bo, WANG Yu-jie, CHEN Qing-yang, WANG Peng, YANG Xi-xiang. Coordinated variable-based guidance method and experimental verification for multi-UAVs[J]. Chinese Journal of Engineering, 2022, 44(8): 1396-1405. doi: 10.13374/j.issn2095-9389.2020.12.30.001
Citation: TANG Zhong-nan, XIN Hong-bo, WANG Yu-jie, CHEN Qing-yang, WANG Peng, YANG Xi-xiang. Coordinated variable-based guidance method and experimental verification for multi-UAVs[J]. Chinese Journal of Engineering, 2022, 44(8): 1396-1405. doi: 10.13374/j.issn2095-9389.2020.12.30.001

基于協調變量的多機協同打擊制導方法與試驗驗證

doi: 10.13374/j.issn2095-9389.2020.12.30.001
基金項目: 國家自然科學基金資助項目(61801495,61903369)
詳細信息
    通訊作者:

    E-mail: yjwang@nudt.edu.cn

  • 中圖分類號: V279.1

Coordinated variable-based guidance method and experimental verification for multi-UAVs

More Information
  • 摘要: 根據多無人機協同打擊的作戰特點和要求,提出了一種通用性集群時空協同打擊制導控制方案。該方案分析了比例導引律(Proportional navigation law, PN)在滿足特定協調變量一致時具有下彈道唯一的特性,以此為基礎,通過選取協調變量,將制導段分為協調段和末制導段。協調段的航跡控制采用改進Dubins方法,實現了協調變量的時空同步收斂;末制導段將三維空間制導解耦為縱向平面與側向平面的制導,基于同系數比例導引實現集群攻擊時間一致。分段航跡控制實現了集群在考慮目標防御射界約束下的時空協同。數值仿真和實際飛行試驗結果表明,該方案具有實時的在線規劃能力,能夠實現大規模集群時空協同下的全向飽和攻擊,打擊時間精度和空間精度較高。

     

  • 圖  1  制導模型示意圖

    Figure  1.  Diagram of the guidance model

    圖  2  協調段制導模型

    Figure  2.  Guidance model of the coordination phase

    圖  3  改進的Dubins航跡生成方法

    Figure  3.  Improved Dubins track generation method

    圖  4  三維協同攻擊示意圖

    Figure  4.  3D engagement geometry of the cooperation attack

    圖  5  分段制導算法流程

    Figure  5.  Segmented guidance algorithm flow

    圖  6  仿真結果. (a) 三機$ {\sigma ^ * }{\text{ = 4}}{{\text{5}}^ \circ } $分段制導仿真結果; (b) 四機${\sigma ^ * } = {0^ \circ }$分段制導仿真結果

    Figure  6.  Simulation results: (a) 3-UAVs segmented guidance when ${\sigma ^ * }{\text{ = 4}}{{\text{5}}^ \circ } $; (b) 4-UAVs segmented guidance when $ {\sigma ^ * } = {0^ \circ } $

    圖  7  系統組成. (a) 協同打擊驗證系統架構; (b) 模型機設備情況

    Figure  7.  System construction: (a) architecture of the collaborative attack verification system; (b) installation of the model UAV

    圖  8  試驗航線設計

    Figure  8.  Verify the flight route design

    圖  9  協調段飛行數據. (a)協調段二維航跡; (b)僚機相對相位變化

    Figure  9.  Flight data of the coordination phase: (a) 2D track of the coordination phase; (b) relative phase change of wing UAVs

    圖  10  協調變量. (a) 二維距離R變化; (b) 速度前置角$\sigma $變化

    Figure  10.  Coordinated variables: (a) change process of the 2D distance; (b) change process of the velocity leading angle

    圖  11  末制導段航跡. (a)末制導段二維航跡; (b) 末制導段三維航跡

    Figure  11.  Track of terminal phase: (a) 2D track; (b) 3D track

    圖  12  實拍圖像. (a)打擊前一時刻各機位置; (b) 打擊瞬間圖像

    Figure  12.  Real images: (a) positions of UAVs at the moment before striking; (b) images of an instant hit

    表  1  飛行相關點的相對坐標

    Table  1.   Relative coordinates of flight-related points

    Flight-related pointsEast/mNorth/mHeight/m
    Ground control station000
    Attack point?881650
    Waypoint 1?11522190
    Waypoint 212125790
    Waypoint 3334?9490
    Waypoint 488?15690
    下載: 導出CSV

    表  2  打擊發起時刻協調變量偏差

    Table  2.   Coordinate variables deviation at the attack initiation time

    NumberDeviation of $\varphi $/(°)Deviation of $R$/mDeviation of $\sigma $/(°)
    Leader0?10.2?8.5
    Wing 14.5?10.54.8
    Wing 2?5.22.55.2
    下載: 導出CSV

    表  3  末制導段飛行時間和空間偏差

    Table  3.   Flight time and space deviation of the terminal phase

    NumberFlight time of terminal phase /sDeviation of 2D distance/mDeviation of
    height/m
    Leader11.90.280.27
    Wing 110.60.230.25
    Wing 211.30.060.31
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kim H G, Kim H J. Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view. IEEE Trans Aerosp Electron Syst, 2019, 55(1): 82 doi: 10.1109/TAES.2018.2848319
    [2] Zeng J, Dou L H, Xin B. A joint mid-course and terminal course cooperative guidance law for multi-missile salvo attack. Chin J Aeronaut, 2018, 31(6): 1311 doi: 10.1016/j.cja.2018.03.016
    [3] Zhen Z Y, Xing D J, Gao C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerosp Sci Technol, 2018, 76: 402 doi: 10.1016/j.ast.2018.01.035
    [4] Duan H B, Zhao J X, Deng Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning. IEEE Trans Aerosp Electron Syst, 2021, 57(1): 706 doi: 10.1109/TAES.2020.3029624
    [5] Liu X, Liu L, Wang Y J. Minimum time state consensus for cooperative attack of multi-missile systems. Aerosp Sci Technol, 2017, 69: 87 doi: 10.1016/j.ast.2017.06.016
    [6] He S M, Kim M, Song T, et al. Three-dimensional salvo attack guidance considering communication delay. Aerosp Sci Technol, 2018, 73: 1 doi: 10.1016/j.ast.2017.11.019
    [7] Kang S, Wang J N, Li G, et al. Optimal cooperative guidance law for salvo attack: An MPC-based consensus perspective. IEEE Trans Aerosp Electron Syst, 2018, 54(5): 2397 doi: 10.1109/TAES.2018.2816880
    [8] Peng Z H, Sun L, Chen J. Online path planning for UAV low-altitude penetration based on an improved differential evolution algorithm. J Univ Sci Technol Beijing, 2012, 34(1): 96

    彭志紅, 孫琳, 陳杰. 基于改進差分進化算法的無人機在線低空突防航跡規劃. 北京科技大學學報, 2012, 34(1):96
    [9] Kim C Y, Ra W S, Whang I H. Time-to-go rational function biased PN guidance law for precise impact angle // 2017 17th International Conference on Control, Automation and Systems (ICCAS). Jeju, 2017: 1804
    [10] Chen X T, Wang J Z. Nonsingular sliding-mode control for field-of-view constrained impact time guidance. J Guid Control Dyn, 2018, 41(5): 1214 doi: 10.2514/1.G003146
    [11] Erer K S, Tekin R. Impact time and angle control based on constrained optimal solutions. J Guid Control Dyn, 2016, 39(10): 2448 doi: 10.2514/1.G000414
    [12] Hou Z W, Liu L, Wang Y J. Time-to-go estimation for terminal sliding mode based impact angle constrained guidance. Aerosp Sci Technol, 2017, 71: 685 doi: 10.1016/j.ast.2017.10.016
    [13] Zhao J B, Yang S X. Integrated cooperative guidance framework and cooperative guidance law for multi-missile. Chin J Aeronaut, 2018, 31(3): 546 doi: 10.1016/j.cja.2017.12.013
    [14] Xu Q Q, Ge J Q, Yang T. Multiple missiles cooperative guidance based on proportional navigation guidance // 2020 Chinese Control and Decision Conference (CCDC). Hefei, 2020: 4423
    [15] Song J H, Song S M, Xu S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence. Aerosp Sci Technol, 2017, 67: 193 doi: 10.1016/j.ast.2017.04.007
    [16] Kim H G, Cho D, Kim H J. Sliding mode guidance law for impact time control without explicit time-to-go estimation. IEEE Trans Aerosp Electron Syst, 2019, 55(1): 236 doi: 10.1109/TAES.2018.2850208
    [17] Zhu J W, Su D L, Xie Y, et al. Impact time and angle control guidance independent of time-to-go prediction. Aerosp Sci Technol, 2019, 86: 818 doi: 10.1016/j.ast.2019.01.047
    [18] Zhu J W, Yang Y P, Zhang W A, et al. Cooperative attack tolerant tracking control for multi-agent system with a resilient switching scheme. Neurocomputing, 2020, 409: 372 doi: 10.1016/j.neucom.2020.06.087
    [19] Zhao J B, Yang S X. Review of multi-missile cooperative guidance. Acta Aeronaut et Astronaut Sin, 2017, 38(1): 020256

    趙建博, 楊樹興. 多導彈協同制導研究綜述. 航空學報, 2017, 38(1):020256
    [20] Lü T, Lü Y Y, Li C J, et al. Time-cooperative guidance law for multiple missiles with spatial cooperation. Acta Aeronaut et Astronaut Sin, 2018, 39(10): 322115

    呂騰, 呂躍勇, 李傳江, 等. 帶空間協同的多導彈時間協同制導律. 航空學報, 2018, 39(10):322115
    [21] Ji H B, Liu X D, Song Z Y, et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint. J Frankl Inst, 2018, 355(18): 9192 doi: 10.1016/j.jfranklin.2017.01.036
    [22] He S M, Wang W, Wang J. Three-dimensional impact angle guidance laws based on model predictive control and sliding mode disturbance observer. J Dyn Syst Meas Control, 2016, 138(8): 081006 doi: 10.1115/1.4033272
    [23] Liu B J, Hou M S, Yu Y, et al. Three-dimensional impact angle control guidance with field-of-view constraint. Aerosp Sci Technol, 2020, 105: 106014 doi: 10.1016/j.ast.2020.106014
    [24] Shaferman V, Shima T. Cooperative differential games guidance laws for imposing a relative intercept angle. J Guid Control Dyn, 2017, 40(10): 2465 doi: 10.2514/1.G002594
    [25] Wei X Q, Yang J Y, Fan X R. Design of distributed guidance laws for multiple unmanned aerial vehicles cooperative attack of a moving target based on reducing surrounding area. Trans Inst Meas Control, 2020, 42(12): 2155 doi: 10.1177/0142331220908683
    [26] Lee C H, Tsourdos A. Cooperative control for multiple interceptors to maximize collateral damage. IFAC-PapersOnLine, 2018, 51(12): 56 doi: 10.1016/j.ifacol.2018.07.088
    [27] Yang Z. Research on Multi-Constrainted Terminal Guidance Laws and Target State Estimation Methods [Dissertation]. Beijing: Beijing Institute of Technology, 2017

    楊哲. 多約束末制導律與目標狀態估計方法研究[學位論文]. 北京: 北京理工大學, 2017
    [28] Xin H B, Chen Q Y, Wang Y J, et al. A path planning and guidance method for multi-UAVs coordinated strike with time-space constraints // 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Hangzhou, 2020: 193
    [29] Xu C, Huang D Q, Kong F Q. Small UAV passive target localization approach and accuracy analysis. Chin J Sci Instrum, 2015, 36(5): 1115

    徐誠, 黃大慶, 孔繁鏘. 一種小型無人機無源目標定位方法及精度分析. 儀器儀表學報, 2015, 36(5):1115
  • 加載中
圖(12) / 表(3)
計量
  • 文章訪問數:  492
  • HTML全文瀏覽量:  282
  • PDF下載量:  106
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-05-29
  • 網絡出版日期:  2021-07-06
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回