Research progress on the evolution of physical and mechanical properties of thermally damaged rock
-
摘要: 為深入了解溫度作用下巖石熱損傷演化機制,對超深鉆探、深地實驗室、核廢料處置庫、地熱資源開發等地下巖體工程的安全性和穩定性做出合理性評價,本文通過分析整理國內外文獻,系統綜述了溫度作用下巖體變形破壞方面的研究進展與成果。簡述了高溫作用下巖石的物理力學特性,側重總結了巖石物理力學參量隨溫度變化的演化規律。重點分析了深部巖石材料在高溫條件下巖體結構及相關物理場探測技術的最新研究成果,梳理了聲發射(AE)、超聲波(UT)、X射線分析(XRD)、偏光顯微鏡(PM)、掃描電子顯微鏡(SEM)、核成像技術(NMR)以及CT掃描技術等先進的輔助試驗設備在熱破裂分析中的應用。歸納總結了國內外學者采用的熱力耦合模型和數值分析方法及適用條件,簡略闡述了溫度作用下巖石力學參量變異性特征。最后,指出了當前巖石熱損傷研究中存在的一些局限性,并從深部地下工程建設方面展望了未來的發展方向,即多尺度、多場?相探究巖石熱損傷機理,宏?細?微觀角度系統分析巖石熱損傷演化規律。Abstract: With the depletion of the earth’s shallow resources, the exploration of deep rock engineering has become a research hotspot. The research mostly focuses on the influence of high temperature on the properties of deep rocks. This study aims to understand the thermal damage evolution mechanism in a rock under high temperature and make a reasonable evaluation on the safety and stability of underground rock engineering, such as ultra-deep well drilling, deep ground laboratory, nuclear waste disposal, and geothermal resource development. Based on the analysis and review of domestic and foreign literature, the authors systematically reviewed the research progress and development of deformation and failure of the high-temperature rock masses and temperature-varying rock masses under temperature effect. The physical and mechanical properties of rocks after being subjected to high temperature and under real-time high temperature were briefly described. The changes with temperature in the physical and mechanical parameters of deep rocks were summarized. The latest research on the deformation and failure mechanism under high temperature was analyzed, and the applications of advanced auxiliary test technologies, such as acoustic emission (AE), ultrasonic testing (UT), X-ray diffraction (XRD), polarizing microscope (PM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR), and computed tomography (CT) scanning system, in the deformation and failure analysis were introduced. The advantages and disadvantages of the coupled thermal-stress model of the rock, the numerical analysis method, and the applicable conditions were summarized. The variation characteristics of the rock’s mechanical parameters under high temperature were briefly described. Finally, the limitations of the current studies on high-temperature thermal damage in deep rocks were pointed out. The future prospects were discussed from several aspects, i.e., to explore the mechanism of rock thermal damage in a multi-scale and multi-field-phase, and the evolution law of rock thermal damage was systematically analyzed from macro, meso, and micro aspects.
-
Key words:
- high temperature rock mass /
- thermal damage /
- failure mechanism /
- coupling model /
- thermal cracking
-
表 1 高溫作用下巖石力學參數變化規律匯總表[28]
Table 1. Summary of changes in the mechanical parameters of the rock subjected to high temperature[28]
Heating temperature/℃ Cooling method Uniaxial compressive strength Elastic modulus Peak strain Poisson ratio References 20?800 Cooling in furnace Decrease generally Decrease generally Increase generally Decrease generally Reference [29] 20?800 Cooling in furnace Decrease Decrease Reference [30] 20?800 Cooling in air Decrease Decrease Decrease Reference [31] 25?1300 Cooling in air Decrease Decrease Reference [32] 20?1000 Cooling in furnace Decrease Decrease Increase Reference [33] 23?800 Cooling in air/water Decrease generally Increase-decrease Decrease - Increase Reference [34] 25?500 (5 ℃·min?1) Decrease Increase-decrease Reference [35] 25?800 Cooling in furnace Decrease Decrease Decrease generally Reference [36] 25?800 Cooling in air Increase-decrease Increase-decrease Increase Nearly constant Reference [37] 20?800 Cooling in furnace/water Decrease Decrease Increase generally Reference [38] 25?900 Cooling in water Increase-decrease Increase-decrease Increase generally Fluctuate Reference [39] 25?1000 Cooling in air/water Decrease generally Decrease generally Increase generally Increase generally Reference [40] www.77susu.com -
參考文獻
[1] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547 [2] Im K, Avouac J P. Investigating the role of thermal stresses on induced seismicity//SEG International Exposition and 90th Annual Meeting. Houston, 2020: 1335 [3] Bauer S J, Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites//20th U S Symposium on Rock Mechanics (USRMS). Austin, 1979: ARMA-79-0007 [4] Trice R, Warren N. Preliminary study on the correlation of acoustic velocity and permeability in two granodiorites from the LASL Fenton Hill deep borehole, GT-2, near the Valles Caldera, New Mexico [J/OL]. Los Alamos Scientific Lab (1977-07-01) [2020-12-20]. https://www.osti.gov/biblio/7219183 [5] Zhang W Q. Study on the Microscopic Mechanism of Rock Thermal Damage and the Evolution Characteristics of Macroscopic Physical and Mechanical Properties—Taking Typical Rock as an Example [Dissertation]. Xuzhou: China University of Mining and Technology, 2017張衛強. 巖石熱損傷微觀機制與宏觀物理力學性質演變特征研究—以典型巖石為例[學位論文]. 徐州: 中國礦業大學, 2017 [6] Zhang S Q, Paterson M S, Cox S F. Microcrack growth and healing in deformed calcite aggregates. Tectonophysics, 2001, 335(1-2): 17 doi: 10.1016/S0040-1951(01)00043-9 [7] Jin P H, Hu Y Q, Shao J X, et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling. Chin J Rock Mech Eng, 2018, 37(11): 2556靳佩樺, 胡耀青, 邵繼喜, 等. 急劇冷卻后花崗巖物理力學及滲透性質試驗研究. 巖石力學與工程學報, 2018, 37(11):2556 [8] Zhao Z D, Gao S, Luo T C, et al. Origin of the crustal low velocity layer of Qinling and North China evidence from laboratory measurement of p-wave velocity in rocks at high pt conditions. Chin J Geophys, 1996, 39(5): 642 doi: 10.3321/j.issn:0001-5733.1996.05.007趙志丹, 高山, 駱庭川, 等. 秦嶺和華北地區地殼低速層的成因探討──巖石高溫高壓波速實驗證據. 地球物理學報, 1996, 39(5):642 doi: 10.3321/j.issn:0001-5733.1996.05.007 [9] Xi D Y, Xie R, Yi L K, et al. Effect of temperature on rock modulus and wave velocity//Proceedings of the 6th National Academic Conference on Rock Dynamics. Kunming, 1998: 31席道瑛, 謝端, 易良坤, 等. 溫度對巖石模量和波速的影響//第六屆全國巖石動力學學術會議文集. 昆明, 1998: 31 [10] Hu J J. Study on Thermal Damage Characteristics of Limestone under High Temperature [Dissertation]. Xuzhou: China University of Mining and Technology, 2019胡建軍. 高溫作用下石灰巖的熱損傷特性研究[學位論文]. 徐州: 中國礦業大學, 2019 [11] Aurangzeb, Khan L A, Maqsood A. Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: A test example of limestones. J Phys D:Appl Phys, 2007, 40(16): 4953 doi: 10.1088/0022-3727/40/16/030 [12] Zhang J H, Wang J T, Zhao A G. Fracture properies of granite at high temperature. Rock Soil Mech, 1987, 8(4): 11張靜華, 王靖濤, 趙愛國. 高溫下花崗巖斷裂特性的研究. 巖土力學, 1987, 8(4):11 [13] Zhang L Y, Mao X B, Yang Y, et al. Experiment study on mechanical properties of limestone at high temperature. J Liaoning Tech Univ, 2006, 25(Suppl 2): 121張連英, 茅獻彪, 楊逾, 等. 高溫狀態下石灰巖力學性能實驗研究. 遼寧工程技術大學學報, 2006, 25(增刊2): 121 [14] Oda M. Modern developments in rock structure characterization. Compr Rock Eng, 1993, 1: 185 [15] Xu X C. Preliminary study on Mechanical Properties and Damage Characteristics of Granite in Three Gorges under Temperature [Dissertation]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of sciences, 1998許錫昌. 溫度作用下三峽花崗巖力學性質及損傷特性初步研究[學位論文]. 武漢: 中國科學院武漢巖土力學研究所, 1998 [16] Yang S Q, Xu P, Li Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 2017, 69: 93 doi: 10.1016/j.geothermics.2017.04.009 [17] Su C D, Wei S J, Yang Y S, et al. Analysis of strength and conventional triaxial compression deformation characters of coarse sandstone after high temperature. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2792蘇承東, 韋四江, 楊玉順, 等. 高溫后粗砂巖常規三軸壓縮變形與強度特征分析. 巖石力學與工程學報, 2015, 34(增刊1): 2792 [18] Su C D, Wei S J, Qin B D, et al. Experimental study of influence mechanism of high temperature on mechanical properties of fine-grained sandstone. Rock Soil Mech, 2017, 38(3): 623蘇承東, 韋四江, 秦本東, 等. 高溫對細砂巖力學性質影響機制的試驗研究. 巖土力學, 2017, 38(3):623 [19] Wu J W, Zhao Y S, Wan Z J, et al. Experimental study of acoustic emission of granite due to thermal cracking under high temperature and isostatic stress. J China Coal Soc, 2012, 37(7): 1111武晉文, 趙陽升, 萬志軍, 等. 高溫均勻壓力花崗巖熱破裂聲發射特性實驗研究. 煤炭學報, 2012, 37(7):1111 [20] Kumari W G P, Ranjith P G, Perera M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 2017, 65: 44 doi: 10.1016/j.geothermics.2016.07.002 [21] Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011萬志軍, 趙陽升, 董付科, 等. 高溫及三軸應力下花崗巖體力學特性的實驗研究. 巖石力學與工程學報, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011 [22] Ding Q L, Ju F, Mao X B, et al. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment. Rock Mech Rock Eng, 2016, 49(7): 2641 doi: 10.1007/s00603-016-0944-x [23] Han G S, Jing H W, Su H J, et al. Experimental research on mechanical behaviors of water-cooled sandstone after high temperature treament. J China Univ Min Technol, 2020, 49(1): 69韓觀勝, 靖洪文, 蘇海健, 等. 高溫狀態砂巖遇水冷卻后力學行為研究. 中國礦業大學學報, 2020, 49(1):69 [24] Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling. Geol Sci Technol Inf, 2019, 38(4): 287喻勇, 徐達, 竇斌, 等. 高溫花崗巖遇水冷卻后可鉆性試驗研究. 地質科技情報, 2019, 38(4):287 [25] Zhang F, Zhao J J, Hu D W, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng, 2018, 51(3): 677 doi: 10.1007/s00603-017-1350-8 [26] Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169朱振南, 田紅, 董楠楠, 等. 高溫花崗巖遇水冷卻后物理力學特性試驗研究. 巖土力學, 2018, 39(增刊2): 169 [27] Xi B P, Wu Y C, Zhao Y S. Experimental study on the relationship between macroscopic mechanical parameters of granite and thermal shock velocity under thermal shock. Chin J Rock Mech Eng, 2019, 38(11): 2194郤保平, 吳陽春, 趙陽升. 熱沖擊作用下花崗巖宏觀力學參量與熱沖擊速度相關規律試驗研究. 巖石力學與工程學報, 2019, 38(11):2194 [28] Shao Z L, Wang Y, Tang X H. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Eng Geol, 2020, 271: 105614 doi: 10.1016/j.enggeo.2020.105614 [29] Du S J, Liu H, Zhi H T, et al. Testing study on mechanical properties of post-high-temperature granite. Chin J Rock Mech Eng, 2004, 23(14): 2359 doi: 10.3321/j.issn:1000-6915.2004.14.010杜守繼, 劉華, 職洪濤, 等. 高溫后花崗巖力學性能的試驗研究. 巖石力學與工程學報, 2004, 23(14):2359 doi: 10.3321/j.issn:1000-6915.2004.14.010 [30] Zhu H H, Yan Z G, Deng T, et al. Testing study on mechanical properties of tuff, granite and breccia after high temperatures. Chin J Rock Mech Eng, 2006, 25(10): 1945 doi: 10.3321/j.issn:1000-6915.2006.10.001朱合華, 閆治國, 鄧濤, 等. 3種巖石高溫后力學性質的試驗研究. 巖石力學與工程學報, 2006, 25(10):1945 doi: 10.3321/j.issn:1000-6915.2006.10.001 [31] Qiu Y P, Lin Z Y. Testing study on damage of granite samples after high temperature. Rock Soil Mech, 2006, 27(6): 1005 doi: 10.3969/j.issn.1000-7598.2006.06.032邱一平, 林卓英. 花崗巖樣品高溫后損傷的試驗研究. 巖土力學, 2006, 27(6):1005 doi: 10.3969/j.issn.1000-7598.2006.06.032 [32] Xu X L, Kang Z X, Ji M, et al. Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Procedia Earth Planet Sci, 2009, 1(1): 432 doi: 10.1016/j.proeps.2009.09.069 [33] Chen Y L, Ni J, Shao W, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci, 2012, 56: 62 doi: 10.1016/j.ijrmms.2012.07.026 [34] Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005 [35] Zhang W Q, Sun Q, Hao S Q, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng, 2016, 98: 1297 doi: 10.1016/j.applthermaleng.2016.01.010 [36] Yin T B, Shu R H, Li X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite. Trans Nonferrous Met Soc China, 2016, 26(7): 1926 doi: 10.1016/S1003-6326(16)64311-X [37] Yang S Q, Ranjith P G, Jing H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 2017, 65: 180 doi: 10.1016/j.geothermics.2016.09.008 [38] Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng Geol, 2017, 229: 31 doi: 10.1016/j.enggeo.2017.09.012 [39] Zhao Y S, Wan Z J, Feng Z J, et al. Evolution of mechanical properties of granite at high temperature and high pressure. Geomech Geophys Geo, 2017, 3(2): 199 [40] Isaka B, Gamage R, Rathnaweera T, et al. An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite. Energies, 2018, 11(6): 1338 doi: 10.3390/en11061338 [41] Bieniawski Z T. Mechanism of brittle fracture of rock: Part II—experimental studies. Int J Rock Mech Min Sci Geomech Abstr, 1967, 4(4): 407 doi: 10.1016/0148-9062(67)90031-9 [42] Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6 [43] Xie W H, Gao F, Li S C, et al. Study on mechanism of thermal damage fracture for limestone. Rock Soil Mech, 2007, 28(5): 1021 doi: 10.3969/j.issn.1000-7598.2007.05.032謝衛紅, 高峰, 李順才, 等. 石灰巖熱損傷破壞機制研究. 巖土力學, 2007, 28(5):1021 doi: 10.3969/j.issn.1000-7598.2007.05.032 [44] Jiang C X, Xie Q. Real time observation and analysis of meso fracture behavior of marble samples. J Southwest Jiaotong Univ, 1999, 34(1): 87姜崇喜, 謝強. 大理巖細觀破壞行為的實時觀察與分析. 西南交通大學學報, 1999, 34(1):87 [45] Shang J L, Kong C J, Li T J, et al. Observation and study on meso damage and fracture of rock. J Exp Mech, 1999, 14(3): 373尚嘉蘭, 孔常靜, 李廷芥, 等. 巖石細觀損傷破壞的觀測研究. 實驗力學, 1999, 14(3):373 [46] Wu F T, Thomsen L. Microfracturing and deformation of westerly granite under creep condition. Int J Rock Mech Min Sci Geomech Abstr, 1975, 12(5-6): 167 doi: 10.1016/0148-9062(75)91248-6 [47] Jiang G H. Study on the Evolution of Internal Structure and the Relationship between Wave Velocity and Permeability in Rock Subjected to High Temperature Processing [Dissertation]. Beijing: China University of Mining & Technology, Beijing, 2018姜廣輝. 高溫處理后巖石內部結構演化及波速滲透率關系研究[學位論文]. 北京: 中國礦業大學(北京), 2018 [48] Wu X D, Liu J R, Qin J S. Effects of thermal treatment on wave velocity as well as porosity and permeability of rock. J Univ Petroleum China, 2003, 27(4): 70吳曉東, 劉均榮, 秦積舜. 熱處理對巖石波速及孔滲的影響. 石油大學學報(自然科學版), 2003, 27(4):70 [49] Zuo J P, Xie H P, Zhou H W, et al. Fractography of sandstone failure under temperature-tensile stress coupling effects. Chin J Rock Mech Eng, 2007, 26(12): 2444 doi: 10.3321/j.issn:1000-6915.2007.12.009左建平, 謝和平, 周宏偉, 等. 溫度–拉應力共同作用下砂巖破壞的斷口形貌. 巖石力學與工程學報, 2007, 26(12):2444 doi: 10.3321/j.issn:1000-6915.2007.12.009 [50] Zhao Y Y, Wei K, Zhou J Q, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks. Chin J Rock Mech Eng, 2017, 36(1): 142趙亞永, 魏凱, 周佳慶, 等. 三類巖石熱損傷力學特性的試驗研究與細觀力學分析. 巖石力學與工程學報, 2017, 36(1):142 [51] Xu X L, Gao F, Shen X M, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature. Rock Soil Mech, 2010, 31(6): 1752 doi: 10.3969/j.issn.1000-7598.2010.06.012徐小麗, 高峰, 沈曉明, 等. 高溫后花崗巖力學性質及微孔隙結構特征研究. 巖土力學, 2010, 31(6):1752 doi: 10.3969/j.issn.1000-7598.2010.06.012 [52] Zhang L Y. Research on Damage Evoultion and Fracture Mechanisms of Mudstone under High Tempearture [Dissertation]. Xuzhou: China University of Mining and Technology, 2012張連英. 高溫作用下泥巖的損傷演化及破裂機理研究[學位論文]. 徐州: 中國礦業大學, 2012 [53] Yang L T, Marshall A M, Wanatowski D, et al. Effect of high temperatures on sandstone—a computed tomography scan study. Int J Phys Modell Geo, 2017, 17(2): 75 [54] Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185 [55] Xu X C, Liu Q S. A preliminary study on basic mechanical properties for granite at high temperature. Chin J Geotech Eng, 2000, 22(3): 332 doi: 10.3321/j.issn:1000-4548.2000.03.014許錫昌, 劉泉聲. 高溫下花崗巖基本力學性質初步研究. 巖土工程學報, 2000, 22(3):332 doi: 10.3321/j.issn:1000-4548.2000.03.014 [56] Liu Q S, Xu X C. Damage analysis of brittle rock at high temperature. Chin J Rock Mech Eng, 2000, 19(4): 408 doi: 10.3321/j.issn:1000-6915.2000.04.002劉泉聲, 許錫昌. 溫度作用下脆性巖石的損傷分析. 巖石力學與工程學報, 2000, 19(4):408 doi: 10.3321/j.issn:1000-6915.2000.04.002 [57] Yao M D. Experimental Study on Mechanical Properties and Crack Propagation of Thermal Damaged Rock [Dissertation]. Wuhan: Wuhan University, 2017姚孟迪. 熱損傷巖石力學特性及裂紋擴展試驗研究[學位論文]. 武漢: 武漢大學, 2017 [58] Zhu Y G, Liu Q S, Kang Y S, et al. Study of creep damage constitutive relationship of granite considering thermal effect. Chin J Rock Mech Eng, 2011, 30(9): 1882朱元廣, 劉泉聲, 康永水, 等. 考慮溫度效應的花崗巖蠕變損傷本構關系研究. 巖石力學與工程學報, 2011, 30(9):1882 [59] Tang S B, Tang C A, Zhu W C, et al. Numerical investigation on rock failure process induced by thermal stress. Chin J Rock Mech Eng, 2006, 25(10): 2071 doi: 10.3321/j.issn:1000-6915.2006.10.019唐世斌, 唐春安, 朱萬成, 等. 熱應力作用下的巖石破裂過程分析. 巖石力學與工程學報, 2006, 25(10):2071 doi: 10.3321/j.issn:1000-6915.2006.10.019 [60] Xie W H, Li S C, Gao F. Energy fracture criterion of thermal damage-mechanical coupling. J Xi’an Univ Sci Technol, 2007, 27(3): 341 doi: 10.3969/j.issn.1672-9315.2007.03.002謝衛紅, 李順才, 高峰. 巖石熱損傷-力耦合能量破壞準則研究. 西安科技大學學報, 2007, 27(3):341 doi: 10.3969/j.issn.1672-9315.2007.03.002 [61] Xu X L. Research on the Mechanical Characteristics and Micromechanism of Granite under Temperature Loads [Dissertation]. Xuzhou: China University of Mining and Technology, 2008徐小麗. 溫度載荷作用下花崗巖力學性質演化及其微觀機制研究[學位論文]. 徐州: 中國礦業大學, 2008 [62] Zhang Z Z, Gao F, Xu X L. Experimental study of temperature effect of mechanical properties of granite. Rock Soil Mech, 2011, 32(8): 2346 doi: 10.3969/j.issn.1000-7598.2011.08.017張志鎮, 高峰, 徐小麗. 花崗巖力學特性的溫度效應試驗研究. 巖土力學, 2011, 32(8):2346 doi: 10.3969/j.issn.1000-7598.2011.08.017 [63] Gao M B. Hard Rock Constitutive Model and Its Preliminary Application under the Thermal-Mechanical Action [Dissertation]. Chengdu: Chengdu University of Technology, 2014高美奔. 熱-力作用下硬巖本構模型及其初步運用研究[學位論文]. 成都: 成都理工大學, 2014 [64] Li H G, Zhu D Y, Yao H Y, et al. Experimental study on fracture and strength characteristics of marble after heating. J Sichuan Univ (Eng Sci Ed), 2015, 47(Suppl 1): 53李宏國, 朱大勇, 姚華彥, 等. 溫度作用后大理巖破裂及強度特性試驗研究. 四川大學學報(工程科學版), 2015, 47(增刊1): 53 [65] Li T B, Gao M B, Chen G Q, et al. A thermal-mechanical-damage constitutive model for hard brittle rocks and its preliminary application. Chin J Geotech Eng, 2017, 39(8): 1477 doi: 10.11779/CJGE201708015李天斌, 高美奔, 陳國慶, 等. 硬脆性巖石熱-力-損傷本構模型及其初步運用. 巖土工程學報, 2017, 39(8):1477 doi: 10.11779/CJGE201708015 [66] Wang Z Y, Wang S J, Yang Z F. Manifold method in analysis of large deformation for rock. Chin J Rock Mech Eng, 1997, 16(5): 399 doi: 10.3321/j.issn:1000-6915.1997.05.001王芝銀, 王思敬, 楊志法. 巖石大變形分析的流形方法. 巖石力學與工程學報, 1997, 16(5):399 doi: 10.3321/j.issn:1000-6915.1997.05.001 [67] Yang T H, Li L C, Zhu W C, et al. Study of fracture propagation in fractured rocks under the effects of coupled thermal-hydrologic-mechanical(THM) using digital image technology processing//The 9th National Symposium on rock mechanics and engineering. Shenyang, 2006: 335楊天鴻, 李連崇, 朱萬成, 等. 基于數字圖像技術巖石溫度滲流應力耦合破壞機制的數值模擬初探//第九屆全國巖石力學與工程學術大會. 沈陽, 2006: 335 [68] Tang S B, Tang C A, Liang Z Z, et al. Failure process analysis of ceramic materials subjected to thermal shock. Acta Mater Compos Sin, 2008, 25(2): 115 doi: 10.3321/j.issn:1000-3851.2008.02.020唐世斌, 唐春安, 梁正召, 等. 熱沖擊作用下的陶瓷材料破裂過程數值分析. 復合材料學報, 2008, 25(2):115 doi: 10.3321/j.issn:1000-3851.2008.02.020 [69] Tang S B, Zhang H, Tang C A, et al. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock. Int J Solids Struct, 2016, 80: 520 doi: 10.1016/j.ijsolstr.2015.10.012 [70] Zhang F. Physical and Mechanical Properties of High-Temperature Rocks after Different Cooling Treatments [Dissertation]. Dalian: Dalian University of Technology, 2020張帆. 冷沖擊下高溫巖石物理力學特性研究[學位論文]. 大連: 大連理工大學, 2020 [71] Xiong G M, Xi B P, Wu Y C, et al. Numerical study on distribution of temperature field of dry hot rock under hot shock. J Taiyuan Univ Technol, 2018, 49(6): 820熊貴明, 郤保平, 吳陽春, 等. 熱沖擊作用下花崗巖溫度場分布規律數值模擬研究. 太原理工大學學報, 2018, 49(6):820 [72] Yang Z, Yang S Q, Chen M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput Geotech, 2020, 120: 103414 doi: 10.1016/j.compgeo.2019.103414 [73] Li X. Particle Mechanics Modeling of Thermal Effects on Shear Behavior of Granitic Fracture Rocks in Beishan, Gansu Province [Dissertation]. Beijing: China University of Geosciences, 2017李雪. 溫度和應力條件下北山裂隙性花崗質巖石抗剪機理實驗與數值模擬研究[學位論文]. 北京: 中國地質大學(北京), 2017 [74] Li W S. Study on Water-Cooling Cracking Modes and Hydraulic Fracture Propagation Law of High-Temperature Granite [Dissertation]. Jinan: Shandong University, 2020李瑋樞. 高溫花崗巖水冷破裂模式與水壓裂縫擴展規律研究[學位論文]. 濟南: 山東大學, 2020 [75] Xu Z Y, Li T B, Chen G Q, et al. The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect. KSCE J Civ Eng, 2018, 22(8): 2764 doi: 10.1007/s12205-017-1228-z [76] Zhao Z H. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mech Rock Eng, 2016, 49(3): 747 doi: 10.1007/s00603-015-0767-1 -