<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

循環加卸載下閃長玢巖蠕變特性及損傷本構模型

劉振 楊圣奇 柏正林 黃運龍

劉振, 楊圣奇, 柏正林, 黃運龍. 循環加卸載下閃長玢巖蠕變特性及損傷本構模型[J]. 工程科學學報, 2022, 44(1): 143-151. doi: 10.13374/j.issn2095-9389.2020.12.23.004
引用本文: 劉振, 楊圣奇, 柏正林, 黃運龍. 循環加卸載下閃長玢巖蠕變特性及損傷本構模型[J]. 工程科學學報, 2022, 44(1): 143-151. doi: 10.13374/j.issn2095-9389.2020.12.23.004
LIU Zhen, YANG Sheng-qi, BAI Zheng-lin, HUANG Yun-long. Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading[J]. Chinese Journal of Engineering, 2022, 44(1): 143-151. doi: 10.13374/j.issn2095-9389.2020.12.23.004
Citation: LIU Zhen, YANG Sheng-qi, BAI Zheng-lin, HUANG Yun-long. Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading[J]. Chinese Journal of Engineering, 2022, 44(1): 143-151. doi: 10.13374/j.issn2095-9389.2020.12.23.004

循環加卸載下閃長玢巖蠕變特性及損傷本構模型

doi: 10.13374/j.issn2095-9389.2020.12.23.004
基金項目: 國家自然科學基金資助項目(41272344)
詳細信息
    通訊作者:

    E-mail: yangsqi@hotmail.com

  • 中圖分類號: TU45

Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading

More Information
  • 摘要: 分級加載壓縮蠕變試驗未能充分考慮穩定蠕變中的黏塑性應變,故采用三軸循環加卸載壓縮蠕變試驗來實現巖石的黏彈、塑性應變分離,從而使巖石黏彈、塑性應變在巖石蠕變的各個階段得以充分考慮。以某水電站閃長玢巖為例,探討該類巖石蠕變特性。在破壞前,巖石的瞬時彈性應變以及瞬時塑性應變隨著偏應力逐級增大呈線性增長;隨著偏應力的增加,黏彈性應變和黏塑性應變呈非線性增長。引入一個分數階Abel黏壺與Kelvin模型串聯形成新型黏彈性模型;用分數階Abel黏壺代替傳統的黏塑性模型中的線性牛頓體并基于損傷建立黏塑性損傷模型。然后將新型黏彈性模型和黏塑性損傷模型與瞬時彈性模型和瞬時塑性模型串聯組成一個新的巖石蠕變損傷模型。最后將該模型與巖石蠕變曲線進行擬合,從而證明該模型的適用性。

     

  • 圖  1  閃長玢巖三軸壓縮蠕變試驗結果。(a)應變、應力?時間曲線;(b)應力?應變曲線

    Figure  1.  Triaxial compression creep test results of diorite porphyrite: (a) strain and stress vs time curves; (b) stress?strain curve

    圖  2  不同偏應力加載閃長玢巖的瞬時應變。(a)瞬時彈性應變;(b)瞬時塑性應變

    Figure  2.  Instantaneous strain of diorite porphyry under different deviatoric stress loading: (a) instantaneous elastic strain; (b) transient plastic strain

    圖  3  不同偏應力加載時閃長玢巖的蠕變應變。(a)黏彈性應變;(b)黏塑性應變

    Figure  3.  Creep strain of diorite porphyry under different deviatoric stress loading: (a) viscoelastic strain; (b) viscoplastic strain

    圖  4  瞬時塑性模型

    Figure  4.  Transient plasticity model

    圖  5  新型黏彈性模型

    Figure  5.  New viscoelastic model

    圖  6  90 MPa 為例示意圖。(a)擬合結果對比;(b)黏彈、塑性應變分離結果

    Figure  6.  90 MPa schematic diagram: (a) comparison of fitting results; (b) results of viscoelastic and plastic strain separation

    圖  7  黏塑性模型

    Figure  7.  Viscoplastic model

    圖  8  非線性蠕變損傷模型

    Figure  8.  Nonlinear creep damage model

    圖  9  試驗與模型擬合結果。(a)穩態流變擬合;(b)加速流變擬合

    Figure  9.  Test and model fitting results: (a) steady state rheological fitting; (b) accelerated rheological fitting

    表  1  閃長玢巖三軸循環加卸載蠕變試驗黏彈塑性應變分析

    Table  1.   Viscoelastic strain analysis of diorite porphyrite triaxial cyclic loading and unloading creep test

    σa/MPaσb/MPaεm/ 10?3εme/ 10?3εmp/ 10?3εc/ 10?3εce/ 10?3εcp/ 10?3εp/ 10?3
    6009.9674.3425.6251.5880.2131.3757.000
    70011.7994.9376.8621.7320.3371.3958.257
    80014.1695.8078.3611.8540.4321.4239.784
    90017.5266.93710.5892.0530.5521.50112.091
    100020.3824.761
    下載: 導出CSV

    表  2  Kelvin模型與改進Kelvin模型擬合參數

    Table  2.   Fitting parameters of the Kelvin model and improved Kelvin model

    (σ1?σ3) / MPaViscoelastic modelηceo/ GPa?hGce/ GPaηce/ GPa?hnR2
    60Kelvin model99.57488.120.974
    New viscoelastic model666.67240.96848.460.4300.998
    70Kelvin model74.75187.540.864
    New viscoelastic model238.10256.41398.150.2630.996
    80Kelvin model65.16112.930.808
    New viscoelastic model175.44222.22254.260.2120.996
    90Kelvin model57.75104.060.784
    New viscoelastic model140.85225.56302.360.1940.995
    下載: 導出CSV

    表  3  蠕變模型參數

    Table  3.   Creep model parameters

    σ1?σ3)/
    MPa
    ABCEnmbtpR2
    600.030.0830.2840.6550.430.1560.991
    700.0980.0910.6440.7990.2630.1060.997
    800.1520.120.8740.6280.2120.1590.996
    900.2130.1330.7460.7220.1940.2060.994
    1000.0960.48260.353.6570.6650.6770.590.3450.999
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cai M F, He M C, Liu D Y. Rock Mechanics and Engineering. 2nd Ed. Beijing: Science Press, 2019

    蔡美峰, 何滿潮, 劉東燕. 巖石力學與工程. 2版 北京: 科學出版社, 2019
    [2] Sun J. Rheological Behavior of Geomaterials and its Engineering Applications. Beijing: China Architecture and Building Press, 1999

    孫鈞. 巖土材料流變及其工程應用. 北京: 中國建筑工業出版社, 1999
    [3] Cruden D M. Single-increment creep experiments on rock under uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr, 1971, 8(2): 127 doi: 10.1016/0148-9062(71)90004-0
    [4] Li Y S. Creep and relaxation of 4 kinds of rock under uniaxial cimpression tests. Chin J Rock Mech Eng, 1995, 14(1): 39

    李永盛. 單軸壓縮條件下四種巖石的蠕變和松弛試驗研究. 巖石力學與工程學報, 1995, 14(1):39
    [5] Zhao X J, Chen B R, Zhao H B, et al. Laboratory creep tests for time-dependent properties of a marble in Jinping II hydropower station. J Rock Mech Geotech Eng, 2012(2): 168
    [6] Xu P, Yang S Q. Study of visco-elasto-plastic constitutive model of coal under cyclic loading. Chin J Rock Mech Eng, 2015, 34(3): 537

    徐鵬, 楊圣奇. 循環加卸載下煤的黏彈塑性蠕變本構關系研究. 巖石力學與工程學報, 2015, 34(3):537
    [7] Yang S Q, Hu B. Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments. Rock Mech Rock Eng, 2018, 51: 2981 doi: 10.1007/s00603-018-1528-8
    [8] Zhao Y L, Cao P, Wang W J, et al. Viscoelasto-plastic rheological experiment under circular increment step load and unload and nonlinear creep model of soft rocks. J Central South Univ Technol, 2009, 16(3): 488 doi: 10.1007/s11771-009-0082-7
    [9] Chen Y J, Xie B X, Cao P, et al. Dimensional effect of soft rock rheology. J Univ of Sci Technol Beijing, 2008, 30(5): 468 doi: 10.3321/j.issn:1001-053X.2008.05.002

    陳沅江, 謝本賢, 曹平, 等. 軟巖流變的尺寸效應. 北京科技大學學報, 2008, 30(5):468 doi: 10.3321/j.issn:1001-053X.2008.05.002
    [10] Koeller R C. Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech, 1984, 51(2): 299 doi: 10.1115/1.3167616
    [11] Yin D S, Zhang W, Cheng C, et al. Fractional time-dependent Bingham model for muddy clay. J Non Newton Fluid Mech, 2012, 187-188: 32 doi: 10.1016/j.jnnfm.2012.09.003
    [12] Sha B W, Zhu Q Z, Min Z Z. Study on creep characteristics and fractional-order visco-elastoplastic model of granite. J Saf Sci Technol, 2020, 16(3): 24

    沙博文, 朱其志, 閔中澤. 花崗巖蠕變特性及分數階黏彈塑性模型研究. 中國安全生產科學技術, 2020, 16(3):24
    [13] Zhou H W, Liu D, Lei G, et al. The creep-damage model of salt rock based on fractional derivative. Energies, 2018, 11(9): 2349 doi: 10.3390/en11092349
    [14] Wu F, Chen J, Zou Q L. A nonlinear creep damage model for salt rock. Int J Damage Mech, 2019, 28(5): 758 doi: 10.1177/1056789518792649
    [15] Wu F, Liu J F, Wang J. An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ Earth Sci, 2015, 73(11): 6965 doi: 10.1007/s12665-015-4137-9
    [16] Su T, Zhou H W, Zhao J W, et al. A creep model of rock based on variable order fractional derivative. Chin J Rock Mech Eng, 2019, 38(7): 1355

    蘇騰, 周宏偉, 趙家巍, 等. 基于變階分數階導數的巖石蠕變模型. 巖石力學與工程學報, 2019, 38(7):1355
    [17] Yan B Q, Ren F H, Cai M F, et al. A review of the research on physical and mechanical properties and constitutive model of rock under THMC multi-field coupling. Chin J Eng, 2020, 42(11): 1389

    顏丙乾, 任奮華, 蔡美峰, 等. THMC多場耦合作用下巖石物理力學性能與本構模型研究綜述. 工程科學學報, 2020, 42(11):1389
    [18] Li D J, Liu X L, Han C. Variable-order fractional damage creep model based on equivalent viscoelasticity for rock. Rock Soil Mech, 2020, 41(12): 3831

    李德建, 劉校麟, 韓超. 基于等效黏彈性的變階分數階巖石損傷蠕變模型. 巖土力學, 2020, 41(12):3831
    [19] Hu B, Yang S Q, Xu P. A nonlinear rheological damage model of hard rock. J Central South Univ, 2018, 25(7): 1665 doi: 10.1007/s11771-018-3858-9
    [20] Yang S Q, Hu B. Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30?MPa. Sci Rep, 2020, 10: 1900 doi: 10.1038/s41598-020-58595-2
    [21] Wang W, Zhou X Q, Liu T G, et al. Investigation of rheological constitutive model of rocks based on viscoplastic theory. J China Three Gorges Univ Nat Sci, 2010, 32(6): 51

    王偉, 周先齊, 劉桃根, 等. 基于粘塑理論的巖石流變本構模型研究. 三峽大學學報(自然科學版), 2010, 32(6):51
    [22] Yang S Q, Xu P, Ranjith P G. Damage model of coal under creep and triaxial compression. Int J Rock Mech Min Sci, 2015, 80: 337 doi: 10.1016/j.ijrmms.2015.10.006
    [23] Zhao Y L, Wang Y X, Wang W J, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int J Rock Mech Min Sci, 2017, 93: 66 doi: 10.1016/j.ijrmms.2017.01.004
    [24] Zhao Y L, Zhang L Y, Wang W J, et al. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles. Rock Mech Rock Eng, 2017, 50(6): 1409 doi: 10.1007/s00603-017-1187-1
    [25] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Press, 2006
    [26] Qin Y P, Wang L, Sun W B, et al. Study on rheological theory model of rock damage. Chin J Rock Mech Eng, 2002, 21(Suppl 2): 2291

    秦躍平, 王林, 孫文標, 等. 巖石損傷流變理論模型研究. 巖石力學與工程學報, 2002, 21(增刊2): 2291
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  1236
  • HTML全文瀏覽量:  400
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-23
  • 網絡出版日期:  2021-03-02
  • 刊出日期:  2022-01-01

目錄

    /

    返回文章
    返回