退火時間對Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V鈦合金組織及力學性能的影響
doi: 10.13374/j.issn2095-9389.2020.12.22.005
Effect of annealing time on microstructure and mechanical properties of Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V titanium alloy
-
摘要: 針對近α型Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V新型鈦合金,在退火溫度740 ℃的基礎上,研究了退火時間對其組織與力學性能的影響。結果表明:經過3次真空自耗電弧爐熔煉,三火熱軋后得到的板材組織由初生α相基體及β轉變組織組成的部分再結晶組織和加工態組織等組成。隨著退火時間的增加,退火板材的顯微組織均以初生α相為主,且α相所占的比例從81.73%逐漸增加至85.61%,組織中長條狀α相逐漸破碎球化,等軸α相開始均勻化、粗化。隨著退火時間的增加,退火板材的延伸率逐漸增加,抗拉強度先降低再增加然后又降低,屈服強度先增加后降低,顯微硬度先增加后降低。退火時間為1 h時,板材的斷口由滑移帶、漣波、小等軸韌窩組成,斷裂方式為韌性斷裂,退火時間大于等于2 h時,板材的斷口完全由等軸韌窩組成,斷裂方式為韌性斷裂。最佳退火工藝為740 ℃退火2 h,此時板材的抗拉強度、屈服強度、延伸率和顯微硬度分別為:984 MPa、941 MPa、15.27%、HV 347.67。研究結果對高強耐蝕鈦合金退火工藝的制定有指導作用,為解決鈦合金在實際生產中遇到的問題提供了科學依據。Abstract: The effect of annealing time on the microstructure and mechanical properties of Ti?6.0Al?3.0Zr?0.5Sn?1.0Mo?1.5Nb?1.0V new titanium alloys were studied based on the optimum annealing temperature of 740 ℃. Results show that after smelting thrice by vacuum consumable arc furnace and thrice hot rolling processes, the microstructure of the sheet is the partial recrystallization structure composed of the primary α phase, structure of β transformation, and the processing status structure. With increased annealing time, the microstructure of the annealed sheet is mainly composed of the primary α phase, with the proportion of the α phase being gradually increased from 81.73% to 85.61%. The strip-shaped α phase in the microstructure is broken and spheroidized gradually, and an equiaxial α phase begins to be homogenized and coarsened. With the increase of annealing time, the elongation of annealed sheets increases greatly; the tensile strength initially decreases, increases, and then decreases again; and the yield strength and the microhardness first increase and then decrease. When the annealing time is 1 h, the fracture of the sheet has a ductile fracture mode and is composed of slip bands, ripple appearance, and small equiaxial dimples. When the annealing time is more than or equal to 2 h, the fracture exhibits a ductile fracture mode and is completely composed of equiaxial dimples. The optimal annealing process is achieved at 740 ℃ for 2 h, in which the tensile strength, yield strength, elongation, and microhardness of the alloy plate is 984 MPa, 941 MPa, 15.27%, and HV 347.67, respectively. The main results from this paper can guide the formulation of the annealing process of high-strength corrosion-resistant titanium alloy and provide a scientific basis for solving problems encountered in the actual production of titanium alloy.
-
Key words:
- titanium alloy /
- rolling /
- annealing time /
- microstructure /
- mechanical properties
-
圖 5 不同退火時間Ti603鈦合金顯微組織。(a)縱截面,1 h;(b)橫截面,1 h;(c)軋制面,1 h;(d)縱截面,2 h;(e)橫截面,2 h;(f)軋制面,2 h;(g)縱截面,3 h;(h)橫截面,3 h;(i)軋制面,3 h;(j)縱截面,4 h;(k)橫截面,4 h;(l)軋制面,4 h
Figure 5. Microstructure of Ti603 titanium alloy at different annealing times: (a) longitudinal section, 1 h; (b) cross section, 1 h; (c) rolled surface, 1 h; (d) longitudinal section, 2 h; (e) cross section, 2 h; (f) rolled surface, 2 h; (g) longitudinal section, 3 h; (h) cross section, 3 h; (i) rolled surface, 3 h; (j) longitudinal section, 4 h; (k) cross section, 4 h; (l) rolled surface, 4 h
表 1 Ti603鈦合金板材的化學成分(質量分數)
Table 1. Chemical composition of Ti603 titanium alloy sheets
% Ti Al Zr Sn Mo Nb V C O N Bal. 5.93 2.99 0.58 0.91 1.34 0.87 0.017 0.084 0.008 表 2 不同退火時間Ti603鈦合金板材的拉伸性能
Table 2. Tensile mechanical properties of Ti603 titanium alloy sheets at different annealing time
Annealing process Rm/MPa Rp0.2/MPa A/% Without heat treatment 1007 886 7.0 740 ℃×1 h 956 903 10.50 740 ℃×2 h 984 941 15.27 740 ℃×3 h 960 922 16.35 740 ℃×4 h 919 881 17.03 www.77susu.com -
參考文獻
[1] Banerjee D, Williams J C. Perspectives on titanium science and technology. Acta Mater, 2013, 61(3): 844 doi: 10.1016/j.actamat.2012.10.043 [2] Costa B C, Tokuhara C K, Rocha L A, et al. Vanadium ionic species from degradation of Ti?6Al?4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater Sci Eng C, 2019, 96: 730 doi: 10.1016/j.msec.2018.11.090 [3] Kümmel D, Hamann-Schroer M, Hetzner H, et al. Tribological behavior of nanosecond-laser surface textured Ti6A14V. Wear, 2019, 422-423: 261 doi: 10.1016/j.wear.2019.01.079 [4] Jones R, Raman R K S, Iliopoulos A P, et al. Additively manufactured Ti?6Al?4V replacement parts for military aircraft. Int J Fatigue, 2019, 124: 227 doi: 10.1016/j.ijfatigue.2019.02.041 [5] Chang H, Liao Z Q, Wang X D. Ocean Engineering Titanium Material. Beijing: Chemical Industrial Press, 2017常輝, 廖志謙, 王向東. 海洋工程鈦金屬材料. 北京: 化學工業出版社, 2017 [6] Yan S K, Song G L, Li Z X, et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J Mater Sci Technol, 2018, 34(3): 421 doi: 10.1016/j.jmst.2017.11.021 [7] Qian J, Wang Y, Li Y. The application of titanium and titanium alloys on foreign vessls. Ship Sci Technol, 2016, 38(11): 1錢江, 王怡, 李瑤. 鈦及鈦合金在國外艦船上的應用. 艦船科學技術, 2016, 38(11):1 [8] Balachandran S, Kumar S, Banerjee D. On recrystallization of the α and β phases in titanium alloys. Acta Mater, 2017, 131: 423 doi: 10.1016/j.actamat.2017.04.008 [9] Mo W, Zhang Z, Wang Q J, et al. Metallography and Hheat Treatment of Titanium. Beijing: Metallurgical Industry Press, 2009莫畏, 張翥, 王群驕, 等. 鈦的金屬學和熱處理. 北京: 冶金工業出版社, 2009 [10] Tian X J, Zhang S Q, Li A, et al. Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti?4Al?1.5Mn. Mater Sci Eng A, 2010, 527(7-8): 1821 doi: 10.1016/j.msea.2009.11.014 [11] Wu C Z. Effects of aging treatment on the structure and properties of TC16 titaniun alloy. Acta Metall Sin, 2002, 38(z1): 97 doi: 10.3321/j.issn:0412-1961.2002.z1.028吳崇周. 固溶時效熱處理對TC16鈦合金組織和性能的影響. 金屬學報, 2002, 38(z1):97 doi: 10.3321/j.issn:0412-1961.2002.z1.028 [12] Sun H D, Wang T, Tao H L, et al. Effect of rolling temperature and annealing temperature on microstructure and mechanical properties. China Titanium Ind, 2017(4): 40孫虎代, 王田, 陶海林, 等. 軋制溫度及退火溫度對TA5鈦合金棒材組織和性能的影響. 中國鈦業, 2017(4):40 [13] Ma F J, Du Y X, Chen H S, et al. Effect of annealing process on microstructure and properties of Ti80 alloy. Heat Treat Met, 2012, 37(4): 88馬凡蛟, 杜予晅, 陳海生, 等. 退火工藝對Ti80合金組織與性能的影響. 金屬熱處理, 2012, 37(4):88 [14] Wang K, Wu M Y, Yan Z B, et al. Microstructure evolution and static recrystallization during hot rolling and annealing of an equiaxed-structure TC21 titanium alloy. J Alloys Compd, 2018, 752: 14 doi: 10.1016/j.jallcom.2018.04.148 [15] Quan S J, Song K X, Zhang B B, et al. Effect of heat treatment process on microstructure of Ti80 alloy. Trans Mater Heat Treat, 2018, 39(5): 44權思佳, 宋克興, 張斌斌, 等. 熱處理工藝對Ti80合金顯微組織的影響. 材料熱處理學報, 2018, 39(5):44 [16] Shi X H, Cao Z H, Zhang M, et al. Lamellar microstructure's evolution mechanism for Ti?8Al?1Mo?1V titanium alloy during hot rolling and subsequent annealing based on dislocation density analysis. Mater Rep, 2020, 34(12): 12101 doi: 10.11896/cldb.19050117石曉輝, 曹祖涵, 張敏, 等. 基于位錯密度分析的Ti?8Al?1Mo?1V鈦合金片層組織在熱軋及退火過程中的演變機制. 材料導報, 2020, 34(12):12101 doi: 10.11896/cldb.19050117 [17] Wang Y, Zeng W D, Ma X, et al. Quantitative metallography analysis of microstructure of BT25 titanium alloy deformed in two-phase field. Chin J Nonferrous Met, 2013, 23(7): 1861王楊, 曾衛東, 馬雄, 等. BT25鈦合金在兩相區變形過程中的顯微組織定量分析. 中國有色金屬學報, 2013, 23(7):1861 [18] Li C, Chen J, Li W, et al. Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy. J Alloys Compd, 2016, 684: 466 doi: 10.1016/j.jallcom.2016.05.225 [19] You L, Song X P. Effects of rolling and annealing on the texture of Ti?18Nb?4Sn alloy. Acta Metall Sin, 2008, 44(11): 1310 doi: 10.3321/j.issn:0412-1961.2008.11.006尤力, 宋西平. 軋制及退火對Ti?18Nb?4Sn合金織構的影響. 金屬學報, 2008, 44(11):1310 doi: 10.3321/j.issn:0412-1961.2008.11.006 [20] Tsai M T, Chen Y W, Chao C Y, et al. Heat-treatment effects on mechanical properties and microstructure evolution of Ti?6Al?4V alloy fabricated by laser powder bed fusion. J Alloys Compd, 2020, 816: 152615 doi: 10.1016/j.jallcom.2019.152615 [21] Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al. Microstructure design and mechanical properties in a near-α Ti?4Mo alloy. Acta Mater, 2015, 97: 291 doi: 10.1016/j.actamat.2015.06.043 [22] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng:A, 1998, 243(1-2): 32 doi: 10.1016/S0921-5093(97)00778-8 [23] Lü Y F, Meng X J, Li S K, et al. Effects of annealing heat treatment on microstructure and properties of TA15 titanium alloy. Dev Appl Mater, 2009, 24(5): 7 doi: 10.3969/j.issn.1003-1545.2009.05.002呂逸帆, 孟祥軍, 李士凱, 等. 退火熱處理對TA15鈦合金組織性能的影響. 材料開發與應用, 2009, 24(5):7 doi: 10.3969/j.issn.1003-1545.2009.05.002 [24] Yuan J J, Ji Z S, Zhang M C. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment. Chin J Eng, 2019, 41(6): 772原菁駿, 姬忠碩, 張麥倉. 熱變形及熱處理過程中TC17鈦合金組織與取向的關聯性. 工程科學學報, 2019, 41(6):772 [25] Ma Q Q, Zheng W W, Li X W. Microstructures of TC16 titanium alloy annealed at different conditions. J Mater Eng, 2009, 37(1): 19 doi: 10.3969/j.issn.1001-4381.2009.01.005馬琴琴, 鄭為為, 李興無. TC16鈦合金不同退火制度的顯微組織研究. 材料工程, 2009, 37(1):19 doi: 10.3969/j.issn.1001-4381.2009.01.005 [26] Chang H, Zhou L, Zhang T J. Review of solid phase transformation in titanium alloys. Rare Met Mater Eng, 2007, 36(9): 1505 doi: 10.3321/j.issn:1002-185x.2007.09.001常輝, 周廉, 張廷杰. 鈦合金固態相變的研究進展. 稀有金屬材料與工程, 2007, 36(9):1505 doi: 10.3321/j.issn:1002-185x.2007.09.001 [27] Yang G, Wang W D, Qin L Y, et al. Effect of annealing temperature and soaking time on microstructures and microhardness of laser deposition manufacturing TA15 titanium alloy. Infrared Laser Eng, 2017, 46(8): 89楊光, 王文東, 欽蘭云, 等. 退火溫度及保溫時間對激光沉積制造TA15鈦合金微觀組織和顯微硬度的影響. 紅外與激光工程, 2017, 46(8):89 -