Research progress in microstructure and service performance of high-strength and corrosion-resistant ODS?FeCrAl alloy
-
摘要: 氧化物彌散強化(Oxide dispersion strengthened,ODS)FeCrAl合金由于加入一定量的Al元素,使合金表面可形成一層薄而致密的Al2O3保護膜,使得合金即便在1400 ℃的水蒸汽下也不會因為腐蝕導致失效。同時,大量超細氧化物粒子的彌散強化作用使其具備優異的高溫強度。這種兼具高溫強度和耐腐蝕的特性使得ODS?FeCrAl合金成為非常有前景的事故容錯燃料(Accident tolerant fuel , ATF)包殼候選材料,也是快堆等其他工作于高溫強腐蝕環境的先進反應堆包殼的重要候選材料。Al元素的引入會使ODS鐵基合金中彌散粒子的種類發生變化,進而影響其顯微組織和力學性能。針對ODS?FeCrAl合金中引入Al元素所導致的顯微組織變化及其對蠕變性能的影響,總結了國內外相關研究進展,旨在為適用于先進反應堆的ODS?FeCrAl合金的發展提供參考。Abstract: The demand for cleaner and more efficient new generation reactors has become increasingly urgent to solve the world’s energy supply and environmental issues such as carbon emissions. The Fukushima nuclear power plant disaster in 2011 prompted researchers to pay more attention to the safety performance of cladding tube materials in nuclear power plants under non-working conditions. Earlier, zirconium alloy, which was widely used in cladding tube materials, would cause serious accidents due to the production of explosive products after failure under the condition of beyond design-basis accident (BDBA). To avoid this problem, researchers proposed the design concept of accident tolerant fuel (ATF). ATF requires the new cladding material to retain a particular strength under the condition of BDBA and does not produce explosive products, thereby avoiding catastrophic accidents. Oxide dispersion strengthened (ODS)?FeCrAl alloy has good high-temperature strength due to its dispersion strengthening. After treatment, the presence of Al forms a thin and dense Al2O3 protective film on the surface of the alloy. This layer of Al2O3 protects the alloy, ensuring that it does not fail due to corrosion even when exposed to 1400 °C steam. This combination of high-temperature strength and corrosion resistance makes ODS?FeCrAl alloy a promising candidate for advanced reactor cladding materials like ATF. Although the introduction of aluminum improves the corrosion resistance of the alloy, it also changes the type of dispersed particles in the ODS alloy. The size of dispersed particles containing Al is usually larger than before, and their number density decrease. The state of dispersed particles in the alloy is closely related to the mechanical properties of the alloy. In this paper, the current research progress is summarized using relevant domestic and foreign documents considering the influence and control method of the microstructure of ODS?FeCrAl alloy due to the introduction of the Al element with the goal of serving as a reference for the forture development of ODS?FeCrAl alloy.
-
Key words:
- accident tolerant fuel /
- ODS stell /
- microstructure /
- corrosion resistance /
- creep performance
-
圖 2 各種先進核能系統中關鍵材料的服役環境[32]
VHTR—very high temperature reactor; SCWR—supercritical water reactor; GFR—gas-cooled fast reactor; LFR—lead-cooled fast reactor; MSR—molten salt reactor; SFR—sodium-cooled fast reactor; TWR—traveling ware reactor
Figure 2. The service environment of core materials in various advanced nuclear energy systems[32]
圖 3 Y/Ti 比與彌散粒子尺寸的關系.(a)9Cr 無 Ti 樣品 TEM 照片;(b)9Cr 0.1Y/Ti 樣品 TEM 照片; (c) 9Cr 0.4 Y/Ti 樣品 TEM 照片; (d)9Cr 1.0 Y/Ti 樣品 TEM 照片; (e)9Cr 不同 Y/Ti 比樣品的納米顆粒尺寸 分布;(f)MA957 中顆粒尺寸與化學成分的關系[46?47]
Figure 3. Relationship between Y/Ti ratio and dispersed particle size: (a) TEM graph of 9Cr without Ti sample; (b) TEM graph of 9Cr 0.1Y/Ti sample; (c) TEM graph of 9Cr 0.4 Y/Ti sample; (d) TEM graph of 9Cr 1.0 Y/Ti sample; (e) 9Cr nanoparticle size distribution of samples with different Y/Ti ratios; (f) correlation between particle size and chemical composition in MA957[46?47]
圖 4 不同稀土氧化物對 ODS?FeCr 微觀結構與力學性能的關系。(a)14Cr?Y2O3 TEM 照片;(b)14Cr?Y2O3 彌散顆粒分布統計;(c)14Cr?La2O3 TEM 照片;(d)14Cr?La2O3樣品彌散顆粒分布統計;(e)14Cr?CeO2 TEM 照片;(f)14Cr?CeO2彌散顆粒分布統計;(g)14Cr?Y2O3,14Cr?La2O3和 14Cr?CeO2晶粒尺寸分布;(h) 14Cr?Y2O3,14Cr?La2O3和 14Cr?CeO2樣品的實驗與計算屈服應力[48]
σp—Strengthening due to the nanoscale oxides; σGB—Strengthening due to the Hall-Petch effect; σM—Matrix yield stress; σExp—Experiment yield stress; σ0.2—Yield stress
Figure 4. Relationship between different rare earth oxides on the microstructure and mechanical properties of ODS?FeCr: (a)TEM graph of 14Cr?Y2O3; (b) particle size distribution of 14Cr?Y2O3; (c) TEM graph of 14Cr?La2O3; (d) particle size distribution of 14Cr?La2O3; (e)TEM graph of 14Cr?CeO2; (f) particle size distribution of 14Cr?CeO2; (g) grain size distribution of 14Cr?Y2O3, 14Cr?La2O3, and 14Cr?CeO2; (h)experimental and calculated yield stress of 14Cr?Y2O3, 14Cr?La2O3, and 14Cr?CeO2 samples[48]
圖 9 同成分 ODS 合金與非 ODS 化合金的蠕變閾值應力示意圖[74?75]
Figure 9. Schematic of creep threshold stress of the same composition ODS alloy and non-ODS alloy[74?75]
εss—Steady-state uniaxial strain rate; k—Boltzmann constant; T—Temperature; Dsd—Lattice self-diffusion coefficient; G—Shearmodulus; b—Burgers vector; σss—Uniaxial steady-state stress.
表 1 圖 12 中各樣品彌散顆粒統計結果及應力閾值計算值[81]
Table 1. The statistical results of the dispersed particles of each sample and calculated value of the stress threshold in Fig. 12[81]
Sample λ/m Is/m rs/m D/m σth/MPa YAl specimen 1.48×10?7 1.26×10?7 4.40×10?9 8.31×10?9 97?132 YTi specimen 9.30×10?8 8.21×10?8 4.70×10?9 8.54×10?9 156?212 YZr specimen 1.02×10?7 8.96×10?8 4.90×10?9 8.94×10?9 145?195 Note: λ—Inter-particle distance; Is—Center-particle distance; rs—Average particle radius; D—Harmonic parameter; σth—Threshold stress of dislocation creep. www.77susu.com -
參考文獻
[1] Zinkle S J. Advanced materials for fusion technology. Fusion Eng Des, 2005, 74(1-4): 31 doi: 10.1016/j.fusengdes.2005.08.008 [2] Mansur L K, Rowcliffe A F, Nanstad R K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences. J Nucl Mater, 2004, 329-333: 166 doi: 10.1016/j.jnucmat.2004.04.016 [3] Wealer B, Bauer S, Hirschhausen C V, et al. Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation. Renewable Sustainable Energy Rev, 2021, 143: 110836 doi: 10.1016/j.rser.2021.110836 [4] Agency I E. Technology Roadmap: Nuclear Energy. Paris: OECD Publishing, 2010 [5] Duysen J C, Bellefon G M. 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel. J Nucl Mater, 2017, 484: 209 doi: 10.1016/j.jnucmat.2016.11.013 [6] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors. Eng Fail Anal, 2011, 18(8): 1943 doi: 10.1016/j.engfailanal.2011.06.010 [7] Xu S, Chen L Z, Cao S G, et al. Research progress on microstructure design and control of ODS steels applied to advanced nuclear energy systems. Mater Rep, 2019, 33(1): 78 doi: 10.11896/cldb.201901009徐帥, 陳靈芝, 曹書光, 等. 先進核能系統用ODS鋼的顯微組織設計與調控研究進展. 材料導報, 2019, 33(1):78 doi: 10.11896/cldb.201901009 [8] Odette G R, Alinger M J, Wirth B D. Recent developments in irradiation-resistant steels. Annu Rev Mater Res, 2008, 38(1): 471 doi: 10.1146/annurev.matsci.38.060407.130315 [9] Zinkle S J, Snead L L. Designing radiation resistance in materials for fusion energy. Annu Rev Mater Res, 2014, 44(1): 241 doi: 10.1146/annurev-matsci-070813-113627 [10] Ukai S, Ohtsuka S, Kaito T, et al. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors // In: Yvon P, ed. Structural Materials for Generation IV Nuclear Reactors. Amsterdam: Woodhead Publishing, 2017. 357 [11] Pint B A, Dryepondt S, Unocic K A, et al. Development of ODS FeCrAl for compatibility in fusion and fission energy applications. JOM, 2014, 66(12): 2458 doi: 10.1007/s11837-014-1200-z [12] Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure. J Nucl Mater, 2012, 427(1-3): 396 doi: 10.1016/j.jnucmat.2012.05.007 [13] Gesmundo F, Niu Y. The internal oxidation of ternary alloys. V: The transition from internal to external oxidation of the most-reactive component under low oxidant pressures. Oxid Met, 2004, 62(5-6): 375 [14] Chubb W, Alfant S, Bauer A A, et al. Constitution, metallurgy, and oxidation resistance of iron-chromium- aluminum alloys [R/OL]. Battelle Memorial Institute (1958-10-16) [2020-12-17]. https://doi.org/10.2172/4290548 [15] Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr In Fe?Cr?Al alloys. J Iron Steel Res, 2007, 19(7): 46 doi: 10.3321/j.issn:1001-0963.2007.07.011張志剛, 牛焱, 張學軍. 鐵?鉻?鋁合金中鉻的第三組元作用. 鋼鐵研究學報, 2007, 19(7):46 doi: 10.3321/j.issn:1001-0963.2007.07.011 [16] Regina J R, Dupont J N, Marder A R. The effect of chromium on the weldability and microstructure of Fe?Cr?Al weld cladding. Welding J, 2007, 86: 170 [17] Gussev M N, Field K G, Yamamoto Y. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys. Mater Des, 2017, 129: 227 doi: 10.1016/j.matdes.2017.05.009 [18] Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met, 1995, 44(1-2): 113 doi: 10.1007/BF01046725 [19] Tang C C, Jianu A, Steinbrueck M, et al. Influence of composition and heating schedules on compatibility of FeCrAl alloys with high-temperature steam. J Nucl Mater. 2018, 511: 496 [20] Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors. J Nucl Mater, 2013, 441(1-3): 650 doi: 10.1016/j.jnucmat.2012.04.006 [21] Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding. Metall Mater Trans E, 2015, 2(3): 190 [22] Pint B A, Garratt-Reed A J, Hobbs L W. The reactive element effect in commercial ODS FeCrAI alloys. Mater High Temp, 1995, 13(1): 3 doi: 10.1080/09603409.1995.11689496 [23] Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met, 1996, 45(1-2): 1 doi: 10.1007/BF01046818 [24] Whittenberger J D. Tensile and creep properties of the experimental oxide dispersion strengthened iron-base sheet alloy MA-956E at 1365 K. Metall Trans A, 1978, 9(1): 101 doi: 10.1007/BF02647178 [25] Marriott J B, Merz M, Nihoul J, et al. High Temperature Alloys, Their Exploitable Potentia. London and New York: Elsevier Applied Science, 1987 [26] Ohnuma, M, J Suzuki, S Ohtsuka, et al. A New Method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS Steel. Acta Materialia, 2009, 57(18): 5571 doi: 10.1016/j.actamat.2009.07.054 [27] Mukhopadhyay D K, Froes F H, Gelles D S. Development of oxide dispersion strengthened ferritic steels for fusion. J Nucl Mater, 1998, 258-263: 1209 doi: 10.1016/S0022-3115(98)00188-3 [28] Romanoski G R, Snead L L, Klueh R L, et al. Development of an oxide dispersion strengthened, reduced-activation steel for fusion energy. J Nucl Mater, 2000, 283-287: 642 doi: 10.1016/S0022-3115(00)00137-9 [29] Klueh R L, Shingledecker J P, Swindeman R W, et al. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J Nucl Mater, 2005, 341(2-3): 103 doi: 10.1016/j.jnucmat.2005.01.017 [30] Yamamoto T, Odette G R, Miao P, et al. The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates. J Nucl Mater, 2007, 367-370: 399 doi: 10.1016/j.jnucmat.2007.03.047 [31] Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments. J Nucl Mater, 2013, 440(1-3): 420 doi: 10.1016/j.jnucmat.2013.05.047 [32] Was G S, Petti D, Ukai S, et al. Materials for future nuclear energy systems. J Nucl Mater, 2019, 527: 151837 doi: 10.1016/j.jnucmat.2019.151837 [33] Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments. J Nucl Mater, 2002, 307-311: 749 doi: 10.1016/S0022-3115(02)01043-7 [34] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 doi: 10.1016/0022-3115(93)90200-I [35] Zhang L, Ukai S, Hoshino T, et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys. Acta Mater, 2009, 57(12): 3671 doi: 10.1016/j.actamat.2009.04.033 [36] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater, 2004, 329-333: 338 doi: 10.1016/j.jnucmat.2004.04.085 [37] Bailey N, Hosemann P, Sterger E, et al. Initial APT analysis of irradiated MA957. Microsc Microanal, 2012, 18(S2): 1418 doi: 10.1017/S143192761200894X [38] Zilnyk K D, Pradeep K G, Choi P, et al. Long-term thermal stability of nanoclusters in ODS-Eurofer steel: An atom probe tomography study. J Nucl Mater, 2017, 492: 142 doi: 10.1016/j.jnucmat.2017.05.027 [39] Renzetti R A, Sandim H R Z, Sandim M J R, et al. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel. Mater Sci Eng A, 2011, 528(3): 1442 doi: 10.1016/j.msea.2010.10.051 [40] Aydogan E, El-Atwani O, Takajo S, et al. High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys. Acta Mater, 2018, 148: 467 doi: 10.1016/j.actamat.2018.02.006 [41] Klimiankou M, Lindau R, M?slang A. HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application. J Cryst Growth, 2003, 249(1-2): 381 doi: 10.1016/S0022-0248(02)02134-6 [42] Lescoat M L, Ribis J, Gentils A, et al. In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater, 2012, 428(1-3): 176 doi: 10.1016/j.jnucmat.2011.12.009 [43] Klimiankou M, Lindau R, M?slang A. Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic-martensitic steels. Micron, 2005, 36(1): 1 doi: 10.1016/j.micron.2004.08.001 [44] Klimiankou M, Lindau R, M?slang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels. J Nucl Mater, 2004, 329-333: 347 doi: 10.1016/j.jnucmat.2004.04.083 [45] Alinger M J, Odette G R, Hoelzer D T. The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys. J Nucl Mater, 2004, 329-333: 382 doi: 10.1016/j.jnucmat.2004.04.042 [46] Lu C Y, Lu Z, Xie R, et al. Effect of Y/Ti atomic ratio on microstructure of oxide dispersion strengthened alloys. Mater Charact, 2017, 134: 35 doi: 10.1016/j.matchar.2017.10.004 [47] Sakasegawa H, Chaffron L, Legendre F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J Nucl Mater, 2009, 384(2): 115 doi: 10.1016/j.jnucmat.2008.11.001 [48] Li Z Y, Lu Z, Xie R, et al. Effects of Y2O3, La2O3 and CeO2 additions on microstructure and mechanical properties of 14Cr-ODS ferrite alloys produced by spark plasma sintering. Fusion Eng Des, 2017, 121: 159 doi: 10.1016/j.fusengdes.2017.06.039 [49] Hirata, A., T. Fujita, C. T. Liu, et al. Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater, 2012, 60(16): 5686 [50] McClintock D A, Sokolov M A, Hoelzer D T, et al. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater, 2009, 392(2): 353 doi: 10.1016/j.jnucmat.2009.03.024 [51] Czyrska-Filemonowicz A, Szot K, Wasilkowska A, et al. Microscopy (AFM, TEM, SEM) studies of oxide scale formation on FeCrAl based ODS alloys. Solid State Ion, 1999, 117(1-2): 13 doi: 10.1016/S0167-2738(98)00243-4 [52] Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J Nucl Mater, 2015, 467: 703 doi: 10.1016/j.jnucmat.2015.10.019 [53] Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y?Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater, 2011, 59(3): 992 doi: 10.1016/j.actamat.2010.10.026 [54] Schaffer G B, Loretto M H, Smallman R E, et al. The nature of the dispersoids in INCONEL alloy M A6000. J Mater Sci, 1989, 24(9): 3261 doi: 10.1007/BF01139050 [55] Dou P, Kimura A, Okuda T, et al. Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel. J Nucl Mater, 2011, 417(1-3): 166 doi: 10.1016/j.jnucmat.2011.01.061 [56] Gong M Q, Zhou Z J, Hu H L, et al. Effects of aluminum on microstructure and mechanical behavior of 14Cr?ODS steels. J Nucl Mater, 2015, 462: 502 doi: 10.1016/j.jnucmat.2014.12.079 [57] Hsiung L L, Fluss M J, Tumey S J, et al. Formation mechanism and the role of nanoparticles in Fe?Cr ODS steels developed for radiation tolerance. Phys Rev B, 2010, 82(18): 184103 doi: 10.1103/PhysRevB.82.184103 [58] Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater, 2011, 417(1-3): 176 doi: 10.1016/j.jnucmat.2010.12.300 [59] Massey C P, Dryepondt S N, Edmondson P D, et al. Multiscale investigations of nanoprecipitate nucleation, growth, and coarsening in annealed low-Cr oxide dispersion strengthened FeCrAl powder. Acta Mater, 2019, 166: 1 doi: 10.1016/j.actamat.2018.11.062 [60] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater, 2014, 444(1-3): 441 doi: 10.1016/j.jnucmat.2013.10.028 [61] Gao R, Xia L L, Zhang T, et al. Oxidation resistance in LBE and air and tensile properties of ODS ferritic steels containing Al/Zr elements. J Nucl Mater, 2014, 455(1-3): 407 doi: 10.1016/j.jnucmat.2014.07.028 [62] Massey C P, Edmondson P D, Unocic K A, et al. The effect of Zr on precipitation in oxide dispersion strengthened FeCrAl alloys. J Nucl Mater, 2020, 533: 152105 doi: 10.1016/j.jnucmat.2020.152105 [63] Gao R, Zhang T, Wang X P, et al. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum. J Nucl Mater, 2014, 444(1-3): 462 doi: 10.1016/j.jnucmat.2013.10.038 [64] Yu C Z, Oka H, Hashimoto N, et al. Development of damage structure in 16Cr?4Al ODS steels during electron-irradiation. J Nucl Mater, 2011, 417(1-3): 286 doi: 10.1016/j.jnucmat.2011.02.037 [65] Xu H J, Lu Z, Wang D M, et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr?ODS ferritic Steels consolidated by hot isostatic pressing. Fusion Eng Des, 2017, 114: 33 doi: 10.1016/j.fusengdes.2016.11.011 [66] Dong H Q, Yu L M, Liu Y C, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels. J Alloys Compd, 2017, 702: 538 doi: 10.1016/j.jallcom.2017.01.298 [67] Raghavendra K G, Dasgupta A, Ghosh C, et al. Development of a novel ZrO2 dispersion strengthened 9Cr ferritic steel: Characterization of milled powder and subsequent annealing behavior. Powder Technol, 2018, 327: 267 doi: 10.1016/j.powtec.2017.12.076 [68] Kim S W, Shobu T, Ohtsuka S, et al. Kinetic approach for growth and coalescence of nano-size oxide particles in 9Cr?ODS steel using high-energy synchrotron radiation X-rays in SPring-8. Mater Trans, 2009, 50(4): 917 doi: 10.2320/matertrans.MER2008439 [69] Ribis J, de Carlan Y. Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater, 2012, 60(1): 238 doi: 10.1016/j.actamat.2011.09.042 [70] Xu S, Zhou Z J, Long F, et al. Influence of Al addition strategy on the microstructure of a low-Cr oxide dispersion-strengthened ferritic steel. Adv Eng Mater, 2020, 22(4): 1900879 doi: 10.1002/adem.201900879 [71] Wolski K, Thévenot F, Le Coze J. Effect of nanometric oxide dispersion on creep resistance of ODS-FeAl prepared by mechanical alloying. Intermetallics, 1996, 4(4): 299 doi: 10.1016/0966-9795(95)00053-4 [72] Kehagias T, Coheur L, Delavignette P. Effects of creep on the microstructural features of an oxide-dispersion-strengthened superalloy. Mater Sci Eng:A, 1991, 131(1): 1 doi: 10.1016/0921-5093(91)90338-N [73] Wright R N, Anderson M T, Wright J K. Microstructure and properties of an oxide dispersion-strengthened iron aluminide. Mater Sci Eng A, 1998, 258(1-2): 285 doi: 10.1016/S0921-5093(98)00946-0 [74] Lund R W, Nix W D. High temperature creep of Ni–20Cr–2ThO2 single crystals. Acta Metall, 1976, 24(5): 469 doi: 10.1016/0001-6160(76)90068-7 [75] Pharr G M, Nix W D. A comparison of the Orowan stress with the threshold stress for creep for Ni–20Cr–2ThO2 single crystals. Scr Metall, 1976, 10(11): 1007 doi: 10.1016/0036-9748(76)90117-4 [76] Wasilkowska A, Bartsch M, Messerschmidt U, et al. Creep mechanisms of ferritic oxide dispersion strengthened alloys. J Mater Process Technol, 2003, 133(1-2): 218 doi: 10.1016/S0924-0136(02)00237-6 [77] Kassner M E, Pérez-Prado M T. Fundamentals of Creep in Metals and Alloys. 1st Ed. Amsterdam: Elsevier Science, 2004 [78] H?ussler D, Bartsch M, Messerschmidt U, et al. HVTEM in situ observations of dislocation motion in the oxide dispersion strengthened superalloy MA 754. Acta Mater, 2001, 49(18): 3647 doi: 10.1016/S1359-6454(01)00285-3 [79] Sakasegawa H, Chaffron L, Legendre F, et al. Evaluation of threshold stress of the MA957 ODS ferrtic alloy. J Nucl Mater, 2009, 386-388: 511 doi: 10.1016/j.jnucmat.2008.12.151 [80] Lin J L, Mo K, Yun D, et al. In situ synchrotron tensile investigations on 14YWT, MA957, and 9-Cr ODS alloys. J Nucl Mater, 2016, 471: 289 doi: 10.1016/j.jnucmat.2015.10.049 [81] Kamikawa R, Ukai S, Kasai S, et al. Cooperative grain boundary sliding in creep deformation of FeCrAl?ODS steels at high temperature and low strain rate. J Nucl Mater, 2018, 511: 591 doi: 10.1016/j.jnucmat.2018.04.050 -