<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

碳熱焙燒還原砷酸鈣制備金屬砷

熊民 史冠勇 田磊 劉重偉 曹才放 張志輝 徐志峰

熊民, 史冠勇, 田磊, 劉重偉, 曹才放, 張志輝, 徐志峰. 碳熱焙燒還原砷酸鈣制備金屬砷[J]. 工程科學學報, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
引用本文: 熊民, 史冠勇, 田磊, 劉重偉, 曹才放, 張志輝, 徐志峰. 碳熱焙燒還原砷酸鈣制備金屬砷[J]. 工程科學學報, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
Citation: XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002

碳熱焙燒還原砷酸鈣制備金屬砷

doi: 10.13374/j.issn2095-9389.2020.12.14.002
基金項目: 國家重點研發計劃資助項目(2019YFC1907405);國家自然科學基金資助項目(52064021,52074136);中國博士后科學基金資助項目(2019T120625,2019M652276);江西省杰出青年科學基金資助項目(20202ACB213002);江西省博士后擇優資助項目(2019KY09);江西省重點研發計劃資助項目(20192ACB70017);江西省主要學科學術與技術帶頭人-青年人才培養計劃資助項目(20204BCJL23031)
詳細信息
    通訊作者:

    E-mail:xzf_1@163.com

  • 中圖分類號: TQ126.4

Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction

More Information
  • 摘要: 致力于碳熱焙燒還原砷酸鈣制備具有商業價值的金屬單質砷,為推進砷危廢物無害化處理向砷資源化回收利用前進展開科學研究。其中熱重分析表明,砷酸鈣與碳粉混合熱解的質量損失分為3個階段,階段1和階段2為失水過程,階段3為碳還原砷酸鈣生成CaO和砷蒸氣過程。且研究發現,可以利用相邊界反應動力學模型解釋階段3反應機制。而單因素條件實驗結果表明:在溫度1000 ℃、碳配入系數1.4、恒溫時長60 min條件下砷揮發率高達99.94%。X射線衍射儀(XRD)、掃描電鏡能譜儀(SEM?EDS)對反應體系中有關產物表征表明,較優條件下產品砷主要為片狀金屬砷和粉末非晶體砷,焙燒殘渣為CaO。

     

  • 圖  1  實驗合成砷酸鈣X射線衍射圖譜

    Figure  1.  XRD pattern of experimentally synthesized calcium arsenate

    圖  2  實驗裝置

    Figure  2.  Experimental setup

    圖  3  砷酸鈣與碳粉混合熱解特性。(a)砷酸鈣與碳粉混合熱解的熱重?熱重微商曲線;(b)殘渣X射線衍射圖(Ⅰ原物料;Ⅱ第1質量損失階段,320 ℃;Ⅲ第2質量損失階段,700 ℃;Ⅳ第3質量損失階段,1000 ℃)

    Figure  3.  Pyrolysis characteristics of calcium arsenate mixed with carbon powder: (a) TG?DTG curves of the pyrolysis of calcium arsenate mixed with carbon powder; (b) XRD plots of the residue (Ⅰ raw material; Ⅱfirst mass loss stage, 320 ℃; Ⅲ second mass loss stage, 700 ℃; Ⅳ third mass loss stage, 1000 ℃)

    圖  4  第3個質量損失階段動力學模型擬合結果。(a)三維擴散;(b)相邊界反應;(c)相邊界反應模型結果驗算

    Figure  4.  Results of the third weightless phase kinetic model fitting: (a) 3D diffusion; (b) phase boundary reaction; (c) phase boundary reaction model result verification

    圖  5  焙燒溫度對砷揮發影響圖

    Figure  5.  Diagram showing the effect of roasting temperature on arsenic volatilization

    圖  6  碳配入系數對砷揮發率的影響圖

    Figure  6.  Plot of the effect of the carbon incorporation factor on the volatility of arsenic

    圖  7  保溫時間對砷揮發率的影響

    Figure  7.  Effect of the holding time on the volatility of arsenic

    圖  8  產品砷掃描電鏡和X射線衍射圖譜。(a~c)不同放大倍數金屬片砷;(d)粗糙反面金屬片砷;(e)粉末不定型砷;(f)光澤正面金屬片砷;(g) 產品砷X射線衍射圖

    Figure  8.  Arsenic product SEM, XRD patterns: (a?c) metal flake arsenic with different magnification; (d) rough back side of the metal flake arsenic; (e) powdered unshaped arsenic; (f) glossy front side of the metal flake arsenic; (g) XRD of arsenic product

    表  1  合成砷酸鈣的主要成分(質量分數)

    Table  1.   Main components of synthetic calcium arsenate %

    CaAsOOther
    19.8131.4338.4110.35
    下載: 導出CSV

    表  2  動力學機理函數

    Table  2.   Kinetic mechanism function

    Function numberFunction nameMechanismPoints form G(α)
    1Ginstling?Brounshteine
    equation
    Three-dimensional diffusion$ 1-\dfrac{2}{3}\alpha -(1-\alpha {)}^{\frac{2}{3}} $
    2Shrink globularPhase boundary reaction$ 1-(1-\alpha {)}^{\frac{1}{3}} $
    下載: 導出CSV

    表  3  金屬砷的掃描電鏡能譜分析結果(質量分數)

    Table  3.   Results of EDS analysis of arsenic metal %

    numberOAs
    11.1698.84
    20.8599.15
    32.4497.55
    423.3576.65
    50.7299.28
    60.9299.08
    71.6398.37
    81.1498.86
    100.4899.52
    111.3298.68
    120.3899.62
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Jr J V B, Brown P W. The stabilities of calcium arsenates at 23±1 ℃. J Hazard Mater, 1999, 69(2): 197 doi: 10.1016/S0304-3894(99)00105-3
    [2] Long G, Peng Y J, Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Miner Eng, 2012, 36-38: 179 doi: 10.1016/j.mineng.2012.03.032
    [3] Lee P K, Yu S, Jeong Y J, et al. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere, 2019, 217: 183 doi: 10.1016/j.chemosphere.2018.11.010
    [4] Leist M, Casey R J, Caridi D. The fixation and leaching of cement stabilized arsenic. Waste Manag, 2003, 23(4): 353 doi: 10.1016/S0956-053X(02)00116-2
    [5] Yuan Y F, Liu S H. Distribution and removal of arsenic in the process of bottom-blowing continuous copper smelting. China Nonferrous Metall, 2020, 49(2): 37

    袁永鋒, 劉素紅. 底吹連續煉銅過程中砷的走向及控制. 中國有色冶金, 2020, 49(2):37
    [6] Jia H. Recycling and Comprehensive Utilization of Metallurgical Waste with High Arsenic Content [Dissertation]. Changsha: Central South University, 2013

    賈海. 高砷冶金廢料的回收與綜合利用[學位論文]. 長沙: 中南大學, 2013
    [7] Liu G, Shi Y, Guo G L, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J Clean Prod, 2020, 251: 119721 doi: 10.1016/j.jclepro.2019.119721
    [8] Dutré V, Vandecasteele C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Manag, 1995, 15(1): 55 doi: 10.1016/0956-053X(95)00002-H
    [9] Dutré V, Vandecasteele C. Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J Hazard Mater, 1995, 40(1): 55 doi: 10.1016/0304-3894(94)00080-Z
    [10] Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation of industrial arsenic containing waste using extraction and semi-dynamic leach tests. Waste Manag, 1996, 16(7): 625 doi: 10.1016/S0956-053X(97)00003-2
    [11] Vandecasteele C, Dutré V, Geysen D, et al. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag, 2002, 22(2): 143
    [12] Choi W H, Lee S R, Park J Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag, 2009, 29(5): 1766 doi: 10.1016/j.wasman.2008.11.008
    [13] Akhter H, Cartledge F K, Roy A, et al. Solidification/stabilization of arsenic salts: Effects of long cure times. J Hazard Mater, 1997, 52(2-3): 247 doi: 10.1016/S0304-3894(96)01811-0
    [14] Singh T S, Pant K K. Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J Hazard Mater, 2006, 131(1-3): 29 doi: 10.1016/j.jhazmat.2005.06.046
    [15] Yoon I H, Moon D H, Kim K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J Environ Manag, 2010, 91(11): 2322 doi: 10.1016/j.jenvman.2010.06.018
    [16] Zhao Z W, Song Y X, Min X B, et al. XPS and FTIR studies of sodium arsenate vitrification by cullet. J Non Cryst Solids, 2016, 452: 238 doi: 10.1016/j.jnoncrysol.2016.08.028
    [17] Zhao Z W, Chai L Y, Peng B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J Non Cryst Solids, 2017, 466-467: 21 doi: 10.1016/j.jnoncrysol.2017.03.039
    [18] Xu J B, Shen Q H, Chen W, et al. The present situation and the countermeasure of the processing of arsenic residues. Min Metall, 2017, 26(3): 82 doi: 10.3969/j.issn.1005-7854.2017.03.018

    徐建兵, 沈強華, 陳雯, 等. 含砷廢渣處理現狀及對策. 礦冶, 2017, 26(3):82 doi: 10.3969/j.issn.1005-7854.2017.03.018
    [19] Lu X Y. The status quo and progress of arsenic-containing waste residue treatment technology. Mod Salt Chem Ind, 2018, 45(5): 87 doi: 10.3969/j.issn.1005-880X.2018.05.041

    陸曉陽. 含砷廢渣處理技術的現狀與進展. 現代鹽化工, 2018, 45(5):87 doi: 10.3969/j.issn.1005-880X.2018.05.041
    [20] Lu H B. Thermodynamic analysis on crude metal arsenic preparation by arsenic trioxide carbothermic reduction in vacuum. Nonferrous Met (Extr Metall), 2012(10): 55

    盧紅波. As2O3真空碳熱還原制備粗金屬砷的熱力學研究. 有色金屬(冶煉部分), 2012(10):55
    [21] Li X P. Experiment study on arsenic preparation by dc furnace. Min Metall, 2012, 21(3): 56 doi: 10.3969/j.issn.1005-7854.2012.03.015

    李學鵬. 直流電弧爐制備金屬砷試驗研究. 礦冶, 2012, 21(3):56 doi: 10.3969/j.issn.1005-7854.2012.03.015
    [22] Pan C F. An effective way to improve the quality of metallic arsenic. Nonferrous Met (Extr Metall), 1994(2): 32

    潘崇發. 提高金屬砷質量的有效途徑. 有色金屬(冶煉部分), 1994(2):32
    [23] Huang Z L, Liu Y Y, Tao Q Y, et al. Influencing factors of arsenic removal by lime precipitation. Chin J Environ Eng, 2012, 6(3): 734

    黃自力, 劉緣緣, 陶青英, 等. 石灰沉淀法除砷的影響因素. 環境工程學報, 2012, 6(3):734
    [24] Zhang H. Study on the solubility and stability of calcium arsenate [Dissertation]. Guilin: Guilin Institute of Technology, 2005

    張華. 砷酸鈣鹽的溶解度和穩定性研究[學位論文]. 桂林: 桂林工學院, 2005
    [25] Liu H L, Zhu Y N. Thermodynamic analysis of the CO2 effects on the stability of calcium arsenates. Environ Prot Sci, 2006, 32(3): 7 doi: 10.3969/j.issn.1004-6216.2006.03.003

    劉輝利, 朱義年. CO2對砷酸鈣穩定性影響的熱力學分析. 環境保護科學, 2006, 32(3):7 doi: 10.3969/j.issn.1004-6216.2006.03.003
    [26] Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation. Environ Sci Technol, 1999, 33(21): 3806 doi: 10.1021/es980998m
    [27] Wang G, Xue Q G, Shen Y F, et al. Carbothermic reduction kinetics of boron-bearing iron concentrate. Chin J Eng, 2016, 38(5): 623

    王廣, 薛慶國, 沈穎峰, 等. 硼鐵精礦的碳熱還原動力學. 工程科學學報, 2016, 38(5):623
    [28] Hu R Z, Gao S L, Zhao F Q. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press, 2008: 20

    胡榮祖, 高勝利, 趙鳳起. 熱分析動力學. 2版. 北京: 科學出版社, 2008: 20
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  850
  • HTML全文瀏覽量:  445
  • PDF下載量:  77
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-14
  • 網絡出版日期:  2021-03-13
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回