<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

雙電弧集成冷絲復合焊中冷絲位置對焊接過程的影響

向婷 張明瑞 李桓 高瑩 吳世品 婁麗艷

向婷, 張明瑞, 李桓, 高瑩, 吳世品, 婁麗艷. 雙電弧集成冷絲復合焊中冷絲位置對焊接過程的影響[J]. 工程科學學報, 2021, 43(11): 1474-1481. doi: 10.13374/j.issn2095-9389.2020.12.10.001
引用本文: 向婷, 張明瑞, 李桓, 高瑩, 吳世品, 婁麗艷. 雙電弧集成冷絲復合焊中冷絲位置對焊接過程的影響[J]. 工程科學學報, 2021, 43(11): 1474-1481. doi: 10.13374/j.issn2095-9389.2020.12.10.001
XIANG Ting, ZHANG Ming-rui, LI Huan, GAO Ying, WU Shi-pin, LOU Li-yan. Effect of cold wire position on the welding process in twin-arc integrated cold wire hybrid welding[J]. Chinese Journal of Engineering, 2021, 43(11): 1474-1481. doi: 10.13374/j.issn2095-9389.2020.12.10.001
Citation: XIANG Ting, ZHANG Ming-rui, LI Huan, GAO Ying, WU Shi-pin, LOU Li-yan. Effect of cold wire position on the welding process in twin-arc integrated cold wire hybrid welding[J]. Chinese Journal of Engineering, 2021, 43(11): 1474-1481. doi: 10.13374/j.issn2095-9389.2020.12.10.001

雙電弧集成冷絲復合焊中冷絲位置對焊接過程的影響

doi: 10.13374/j.issn2095-9389.2020.12.10.001
基金項目: 國家自然科學基金資助項目(52105394);天津職業技術師范大學科研發展基金資助項目(KYQD202101,KJ1704);天津市教委科研計劃資助項目(2020KJ104)
詳細信息
    通訊作者:

    E-mail: lihuan@tju.edu.cn

  • 中圖分類號: TG442

Effect of cold wire position on the welding process in twin-arc integrated cold wire hybrid welding

More Information
  • 摘要: 搭建了雙電弧集成冷絲復合焊接系統,研究了冷絲不同位置對焊接過程的影響機理,其中包括冷絲作用位置對其加熱熔化作用及表面成形的影響。實驗結果表明:冷絲從兩引導焊絲正前方送入時,熔池前端對冷絲的加熱熔化作用不充分,冷絲末端會頂觸熔池底部,隨著冷絲的持續送進和母材的向后移動,某一時刻冷絲回彈,焊絲末端的熔滴彈出落在母材表面形成大顆粒飛濺。當冷絲從側面送入時,熔池一側的溫度較低,影響熔池金屬的流動,導致最終的焊縫成形不對稱分布。當冷絲從兩引導焊絲正后方送入熔池時,冷絲始終插入熔池中,焊接過程穩定,是理想的冷絲作用位置。此外,隨著冷絲送絲速度的增加,兩種脈沖電流模式(同相和反相)下,熔敷率均隨之增加,且相差不大。同相脈沖電流下電弧對冷絲的加熱熔化作用最強烈,反相脈沖電流下次之,直流模式下最弱。

     

  • 圖  1  雙電弧集成冷絲復合焊焊接系統示意圖

    Figure  1.  Schematic of twin-arc integrated cold wire hybrid welding system

    圖  2  冷絲不同作用位置的示意圖。(a)位于兩引導焊絲正后方;(b)位于兩引導焊絲正前方;(c)位于兩引導焊絲側面

    Figure  2.  Schematic of cold wire different locations: (a) right behind the two leading wires; (b) in front of the two leading wires; (c) in side of the two leading wires

    圖  3  冷絲在后方時的高速攝像圖片

    Figure  3.  High-speed photographs of the cold wire in the rear

    圖  4  冷絲在正前方時的高速攝像圖片

    Figure  4.  High-speed photographs of the cold wire in the front

    圖  5  冷絲在側面時的高速攝像圖片

    Figure  5.  High-speed photographs of the cold wire in the side

    圖  6  冷絲不同作用位置時的焊縫宏觀形貌。(a)冷絲在后;(b)冷絲在側面;(c)冷絲在前

    Figure  6.  Welding appearances at different cold wire positions: (a) cold wire in the rear; (b) cold wire in the side; (c) cold wire in the front

    圖  7  冷絲送絲速度與熔敷速度的關系

    Figure  7.  Relationship between the cold wire feed speed and deposition rate

    圖  8  三種電流模式下冷絲在熔池中的狀態與送絲速度間的對應關系。(a)同相脈沖電流;(b)反相脈沖電流;(c)直流

    Figure  8.  Corresponding relationships between the states of cold wire in the weld pool and feed wire speeds under three current modes: (a) in-phase pulse current; (b) reverse-phase pulse current; (c) direct current

    表  1  兩引導焊絲上的基本脈沖電參數

    Table  1.   Basic pulse parameters of the two leading wires

    Preset current/APreset voltage/VPulse peak current/APulse peak voltage/VPulse base current/APulse base voltage/VPulse peak time/msPulse basic time/msFrequency/Hz
    1402460040100203.2889
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Chen L S. Discussion on the production status and development of welding technology. Nonferrous Met Abstr, 2015, 30(2): 46

    陳連生. 焊接生產現狀與焊接技術的發展研究. 有色金屬文摘, 2015, 30(2):46
    [2] Tusek J. Raising arc welding productivity. Weld Rev Int, 1996, 15(3): 102
    [3] ?berg A E, ?strand E. Improved productivity by reduced variation in gas metal arc welding (GMAW). Int J Adv Manuf Technol, 2017, 92(1-4): 1027 doi: 10.1007/s00170-017-0214-4
    [4] Zhang J G, Wang H Y, Wang X, et al. Research status and prospect of high efficient welding technology for pipeline steel. Hot Work Technol, 2018, 47(3): 18

    張錦剛, 王海燕, 王茜, 等. 管線鋼高效焊接技術的研究現狀及前景分析. 熱加工工藝, 2018, 47(3):18
    [5] Liu L M, Hu C H, Yu S B, et al. A triple-wire indirect arc welding method with high melting efficiency of base metal. J Manuf Process, 2019, 44: 252 doi: 10.1016/j.jmapro.2019.05.022
    [6] Zhang K, Jiang H T, Meng Q, et al. Effect of the welding speed on the microstructure and the mechanical properties of robotic friction stir welded AA7B04 aluminum alloy. Chin J Eng, 2018, 40(12): 1525

    張坤, 江海濤, 孟強, 等. 焊接速度對機器人攪拌摩擦焊AA7B04鋁合金接頭組織和力學性能的影響. 工程科學學報, 2018, 40(12):1525
    [7] Kah P, Suoranta R, Martikainen J. Advanced gas metal arc welding processes. Int J Adv Manuf Technol, 2013, 67: 655 doi: 10.1007/s00170-012-4513-5
    [8] Zhao Y Y, Lee P S, Chung H. Effect of pulsing parameters on drop transfer dynamics and heat transfer behavior in pulsed gas metal arc welding. Int J Heat Mass Transf, 2019, 129: 1110 doi: 10.1016/j.ijheatmasstransfer.2018.10.037
    [9] Xu Y L, Lv N, Fang G, et al. Welding seam tracking in robotic gas metal arc welding. J Mater Process Technol, 2017, 248: 18 doi: 10.1016/j.jmatprotec.2017.04.025
    [10] Sproesser G, Chang Y J, Pittner A, et al. Energy efficiency and environmental impacts of high power gas metal arc welding. Int J Adv Manuf Technol, 2017, 91(9-12): 3503 doi: 10.1007/s00170-017-9996-7
    [11] Mohammadijoo M, Collins L, Henein H, et al. Evaluation of cold wire addition effect on heat input and productivity of tandem submerged arc welding for low-carbon microalloyed steels. Int J Adv Manuf Technol, 2017, 92(1-4): 817 doi: 10.1007/s00170-017-0150-3
    [12] Zhu Z M, Fu P P, Yang Z Y, et al. Experimental research on factors influencing the current commutation process of variable-polarity arc welding. Chin J Eng, 2019, 41(4): 505

    朱志明, 符平坡, 楊中宇, 等. 變極性電弧焊接的電流換向過程影響因素試驗研究. 工程科學學報, 2019, 41(4):505
    [13] Arita H, Morimoto T, Nagaoka S, et al. Development of advanced 3-electrode MAG high-speed horizontal fillet welding process. Weld World, 2009, 53(5-6): 35 doi: 10.1007/BF03266713
    [14] Yokota Y, Shimizu H, Nagaoka S, et al. Development and application of the 3-electrode MAG high-speed horizontal fillet welding process. Weld World, 2012, 56(1-2): 43 doi: 10.1007/BF03321144
    [15] Xu C, Hua X M, Ye D J, et al. An improved simulation model for three-wire gas metal arc welding. Int J Adv Manuf Technol, 2017, 90(5-8): 1447 doi: 10.1007/s00170-016-9419-1
    [16] Gu Y, Hua X M, Ye D J, et al. Numerical simulation of hump suppression in high-speed triple-wire GMAW. Int J Adv Manuf Technol, 2017, 89: 727 doi: 10.1007/s00170-016-9119-x
    [17] Ma X L, Xu C, Wang W C, et al. Impact of welding parameters on arc characteristics in triple-wire welding. J Shanghai Jiao Tong Univ, 2020, 54(7): 682

    馬曉麗, 徐琛, 王偉成, 等. 三絲焊接參數對電弧形態特征的影響. 上海交通大學學報, 2020, 54(7):682
    [18] Fang D S, Liu L M. Analysis of process parameter effects during narrow-gap triple-wire gas indirect arc welding. Int J Adv Manuf Technol, 2017, 88(9-12): 2717 doi: 10.1007/s00170-016-8802-2
    [19] Fang D S, Song G, Liu L M. A novel method of triple-wire gas indirect arc welding. Mater Manuf Process, 2016, 31(3): 352 doi: 10.1080/10426914.2015.1058949
    [20] Liu L M, Fang D S, Song G. Experimental investigation of wire arrangements for narrow-gap triple-wire gas indirect arc welding. Mater Manuf Process, 2016, 31(16): 2136 doi: 10.1080/10426914.2015.1090603
    [21] Wang F Z. Esab ice saw. Electr Weld Mach, 2016, 46(3): 11

    王富州. 伊薩ICETM集成冷絲埋弧焊. 電焊機, 2016, 46(3):11
    [22] Raudsepp H. Integrated cold electrode—latest advancement in Submerged Arc Welding. Electr Weld Mach, 2015, 45(5): 23

    Hannes Raudsepp. 集成冷絲—埋弧焊新技術. 電焊機, 2015, 45(5):23
    [23] Xiang T, Li H, Wei H L, et al. Effects of filling status of cold wire on the welding process stability in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2016, 83(9-12): 1583 doi: 10.1007/s00170-015-7686-x
    [24] Wu K Y, Cao X W, Yin T, et al. Metal transfer process and properties of double-wire double pulsed gas metal arc welding. J Manuf Process, 2019, 44: 367 doi: 10.1016/j.jmapro.2019.06.019
    [25] Xiang T, Li H, Huang C Q, et al. The metal transfer behavior and the effect of arcing mode on metal transfer process in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2017, 90(1-4): 1043 doi: 10.1007/s00170-016-9451-1
    [26] Xiang T, Li H, Wei H L, et al. Arc characteristics and metal transfer behavior of twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol, 2016, 87(9-12): 2653 doi: 10.1007/s00170-016-8663-8
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  664
  • HTML全文瀏覽量:  351
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-10
  • 網絡出版日期:  2021-02-01
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回