<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種基于卷積神經網絡的CSI指紋室內定位方法

劉帥 王旭東 吳楠

劉帥, 王旭東, 吳楠. 一種基于卷積神經網絡的CSI指紋室內定位方法[J]. 工程科學學報, 2021, 43(11): 1512-1521. doi: 10.13374/j.issn2095-9389.2020.12.09.003
引用本文: 劉帥, 王旭東, 吳楠. 一種基于卷積神經網絡的CSI指紋室內定位方法[J]. 工程科學學報, 2021, 43(11): 1512-1521. doi: 10.13374/j.issn2095-9389.2020.12.09.003
LIU Shuai, WANG Xu-dong, WU Nan. A CNN-based CSI fingerprint indoor localization method[J]. Chinese Journal of Engineering, 2021, 43(11): 1512-1521. doi: 10.13374/j.issn2095-9389.2020.12.09.003
Citation: LIU Shuai, WANG Xu-dong, WU Nan. A CNN-based CSI fingerprint indoor localization method[J]. Chinese Journal of Engineering, 2021, 43(11): 1512-1521. doi: 10.13374/j.issn2095-9389.2020.12.09.003

一種基于卷積神經網絡的CSI指紋室內定位方法

doi: 10.13374/j.issn2095-9389.2020.12.09.003
基金項目: 國家自然科學基金資助項目(61371091)
詳細信息
    通訊作者:

    E-mail: wxd@dlmu.edu.cn

  • 中圖分類號: TG142.71

A CNN-based CSI fingerprint indoor localization method

More Information
  • 摘要: 針對提高Wi-Fi指紋室內定位技術性能,提出了一種基于卷積神經網絡(Convolutional neural networks,CNN)的信道狀態信息(Channel state information,CSI)指紋室內定位方法。在離線階段聯合定位環境參考點的幅度差和相位差信息,利用CNN進行訓練,保存訓練后的CNN網絡模型作為指紋;在線階段,針對不同實驗場景,對測試數據的幅度差信息和相位差信息進行加權處理,引入改進的基于概率的指紋匹配算法,利用待定位點的CSI信息并通過CNN網絡模型預測待定位點的坐標。此外,為增強算法普適性,針對復雜室內場景,提出了雙節點定位方案來提高定位精度。在廊廳和實驗室室內兩種不同定位場景進行了實驗,信息聯合定位算法分別獲得了24.7 cm和48.1 cm的平均定位誤差,驗證了基于CNN的CSI幅度差和相位差聯合定位算法的有效性。

     

  • 圖  1  系統結構

    Figure  1.  System structure

    圖  2  CNN網絡結構

    Figure  2.  CNN network structure

    圖  3  兩種實驗場景下幅度與相位差的方差。(a)廊廳;(b)實驗室

    Figure  3.  Variance of the amplitude and phase difference in two experimental scenarios: (a) corridor; (b) laboratory

    圖  4  廊廳場景。(a)實景圖;(b)簡化圖

    Figure  4.  Corridor: (a) real scenario; (b) simplified scenario

    圖  5  實驗室場景。(a)實景圖;(b)簡化圖

    Figure  5.  Laboratory: (a) real scenario; (b) simplified scenario

    圖  6  幅度與幅度差的平均定位誤差

    Figure  6.  Mean error of the amplitude and amplitude difference

    圖  7  不同場景下的誤差收斂情況

    Figure  7.  Error convergence in different scenarios

    圖  8  廊廳誤差累計分布圖

    Figure  8.  Cumulative distribution of corridor error

    圖  9  實驗室誤差累計分布圖

    Figure  9.  Cumulative distribution of laboratory error

    圖  10  不同權重的平均誤差

    Figure  10.  Mean error at different weights

    圖  11  不同權重的標準差

    Figure  11.  Standard deviation at different weights

    圖  12  不同R值的平均誤差

    Figure  12.  Mean error at different values of R

    圖  13  不同幅度相位差的平均誤差

    Figure  13.  Mean error of different amplitudes and phase differences

    圖  14  不同定位算法的平均誤差

    Figure  14.  Mean error of different position algorithms

    圖  15  坐標預測。(a)廊廳;(b)實驗室

    Figure  15.  Coordinate prediction: (a) corridor; (b) laboratory

    表  1  CNN網絡參數

    Table  1.   CNN network parameters

    LayerParameterOutput shape
    InputTraining data(30,30,3,m)
    Conv2D 1Conv 2D,fs=5,s=1(30,30,16,m)
    Conv2D 2Conv 2D,fs=5,s=1(30,30,16,m)
    Conv2D 3Conv 2D,fs=2,s=2(15,15,32,m)
    Conv2D 4Conv 2D,fs=5,s=1(15,15,32,m)
    FlattenK=7200(7200,m)
    FC 1K=1024(1024,m)
    FC 2K=512(512,m)
    OutputK=Nrp(Nm)
    下載: 導出CSV

    表  2  廊廳定位誤差和執行時間

    Table  2.   Corridor positioning error and execution time

    AlgorithmMean error/mStandard deviation/mExecution time/s
    CNNFi combine0.24730.57550.3593
    CNNFi single0.72591.24470.3549
    CiFi1.08451.28210.4530
    DeepFi0.99391.61590.1250
    下載: 導出CSV

    表  3  實驗室定位誤差和執行時間

    Table  3.   Laboratory positioning error and execution time

    AlgorithmMean error/mStandard deviation/mExecution time/s
    CNNFi combine AP=20.48060.85660.5156
    CNNFi combine AP=10.71590.85640.3593
    CNNFi single1.15321.22430.3437
    CiFi1.35591.13900.4531
    DeepFi1.45231.20820.1406
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] He S N, Chan S H G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun Surv Tutorials, 2016, 18(1): 466 doi: 10.1109/COMST.2015.2464084
    [2] Kuutti S, Fallah S, Katsaros K, et al. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J, 2018, 5(2): 829 doi: 10.1109/JIOT.2018.2812300
    [3] Torres-Sospedra J, Jiménez A, Moreira A, et al. Off-line evaluation of mobile-centric indoor positioning systems: The experiences from the 2017 IPIN competition. Sensors, 2018, 18(2): 487 doi: 10.3390/s18020487
    [4] Zhang D Q, Zhao S J, Yang L T, et al. NextMe: localization using cellular traces in Internet of Things. IEEE Trans Ind Inf, 2015, 11(2): 302 doi: 10.1109/TII.2015.2389656
    [5] Pak J M, Ahn C K, Shmaliy Y S, et al. Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering. IEEE Trans Ind Inf, 2015, 11(5): 1089 doi: 10.1109/TII.2015.2462771
    [6] Yassin A, Nasser Y, Awad M, et al. Recent advances in indoor localization: A survey on theoretical approaches and applications. IEEE Commun Surv Tutorials, 2017, 19(2): 1327 doi: 10.1109/COMST.2016.2632427
    [7] Faragher R, Harle R. Location fingerprinting with bluetooth low energy beacons. IEEE J Sel Areas Commun, 2015, 33(11): 2418 doi: 10.1109/JSAC.2015.2430281
    [8] Meng Y, Xiao X F, Zhao K. An underground localization algorithm and topology optimization based on ultra-wide band. Chin J Eng, 2018, 40(6): 743

    孟宇, 肖小鳳, 趙坤. 基于UWB的地下定位算法和拓撲優化. 工程科學學報, 2018, 40(6):743
    [9] Choi H, Son S, Kim J, et al. RF-Based Indoor Locating System for NLOS Environment // 2010 24th IEEE International Conference on Advanced Information Networking and Applications. Perth, 2010: 628
    [10] Wang X D, Wu N, Hu Q Q. Indoor visible light positioning based on multiple illuminated areas cooperation. J Optoelectron Laser, 2017, 28(4): 388

    王旭東, 吳楠, 胡晴晴. 多照明區域協作的室內可見光定位. 光電子·激光, 2017, 28(4):388
    [11] Yang C C, Shao H R. WiFi-based indoor positioning. IEEE Commun Mag, 2015, 53(3): 150 doi: 10.1109/MCOM.2015.7060497
    [12] Khalajmehrabadi A, Gatsis N, Akopian D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges. IEEE Commun Surv Tutorials, 2017, 19(3): 1974 doi: 10.1109/COMST.2017.2671454
    [13] Feng C, Au W S A, Valaee S, et al. Received-signal-strength-based indoor positioning using compressive sensing. IEEE Trans Mob Comput, 2012, 11(12): 1983 doi: 10.1109/TMC.2011.216
    [14] Sohan A A, Ali M, Fairooz F, et al. Indoor Positioning Techniques using RSSI from Wireless Devices // 2019 22nd International Conference on Computer and Information Technology (ICCIT). Dhaka, 2019: 1
    [15] Bahl P, Padmanabhan V N. RADAR: An in-building RF-based user location and tracking system // Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Tel Aviv, 2000: 775
    [16] Youssef M, Agrawala A. The Horus location determination system. Wirel Networks, 2008, 14(3): 357 doi: 10.1007/s11276-006-0725-7
    [17] Hoang M T, Yuen B, Dong X D, et al. Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet Things J, 2019, 6(6): 10639 doi: 10.1109/JIOT.2019.2940368
    [18] Wang X Y, Gao L J, Mao S W. CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet Things J, 2016, 3(6): 1113 doi: 10.1109/JIOT.2016.2558659
    [19] Halperin D, Hu W J, Sheth A, et al. Predictable 802.11 packet delivery from wireless channel measurements. SIGCOMM Comput Commun Rev, 2010, 40(4): 159
    [20] Xie Y X, Li Z J, Li M. Precise power delay profiling with commodity Wi-Fi. IEEE Trans Mob Comput, 2019, 18(6): 1342 doi: 10.1109/TMC.2018.2860991
    [21] Wu K S, Xiao J, Yi Y W, et al. CSI-based indoor localization. IEEE Trans Parallel Distributed Syst, 2013, 24(7): 1300 doi: 10.1109/TPDS.2012.214
    [22] Wu K S, Xiao J, Yi Y W, et al. FILA: Fine-grained indoor localization // 2012 Proceedings IEEE INFOCOM. Orlando, 2012: 2210
    [23] Wang X Y, Gao L J, Mao S W, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information //2015 IEEE Wireless Communications and Networking Conference (WCNC). New Orleans, 2015: 1666
    [24] Wang Y, Huang X D, Guo S T. Indoor fingerprint location algorithm based on convolutional neural network. J Software, 2018, 29(Suppl 1): 63

    王英, 黃旭東, 郭松濤. 基于卷積神經網絡的室內指紋定位算法. 軟件學報, 2018, 29(增刊1): 63
    [25] Wang X Y, Wang X Y, Mao S W. CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi // 2017 IEEE International Conference on Communications (ICC). Paris, 2017: 1
    [26] Li H, Zeng X, Li Y, et al. Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images. China Communications, 2019, 16(9): 250 doi: 10.23919/JCC.2019.09.019
  • 加載中
圖(15) / 表(3)
計量
  • 文章訪問數:  1217
  • HTML全文瀏覽量:  799
  • PDF下載量:  146
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-09
  • 網絡出版日期:  2021-03-01
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回