<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種基于輕量級神經網絡的高鐵輪對軸承故障診斷方法

鄧飛躍 丁浩 呂浩洋 郝如江 劉永強

鄧飛躍, 丁浩, 呂浩洋, 郝如江, 劉永強. 一種基于輕量級神經網絡的高鐵輪對軸承故障診斷方法[J]. 工程科學學報, 2021, 43(11): 1482-1490. doi: 10.13374/j.issn2095-9389.2020.12.09.001
引用本文: 鄧飛躍, 丁浩, 呂浩洋, 郝如江, 劉永強. 一種基于輕量級神經網絡的高鐵輪對軸承故障診斷方法[J]. 工程科學學報, 2021, 43(11): 1482-1490. doi: 10.13374/j.issn2095-9389.2020.12.09.001
DENG Fei-yue, DING Hao, Lü Hao-yang, HAO Ru-jiang, LIU Yong-qiang. Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network[J]. Chinese Journal of Engineering, 2021, 43(11): 1482-1490. doi: 10.13374/j.issn2095-9389.2020.12.09.001
Citation: DENG Fei-yue, DING Hao, Lü Hao-yang, HAO Ru-jiang, LIU Yong-qiang. Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network[J]. Chinese Journal of Engineering, 2021, 43(11): 1482-1490. doi: 10.13374/j.issn2095-9389.2020.12.09.001

一種基于輕量級神經網絡的高鐵輪對軸承故障診斷方法

doi: 10.13374/j.issn2095-9389.2020.12.09.001
基金項目: 國家自然科學基金資助項目(11802184,11790282);河北省自然科學基金資助項目(E2019210049);河北省科技計劃項目資助項目(20310803D);河北省“三三三人才工程”資助項目(A202101017);北京市重點實驗室研究基金資助課題(PGU2020K009)
詳細信息
    通訊作者:

    E-mail:dengfy@stdu.edu.cn

  • 中圖分類號: TG142.71

Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network

More Information
  • 摘要: 深度神經網絡技術用于機械設備故障診斷展現出了巨大潛力,但繁重復雜的計算量對計算機硬件提出了嚴苛的要求,嚴重限制了其在實際工程中的應用。基于此提出一種新型的輕量級神經網絡ShuffleNet,用于高速列車輪對軸承故障診斷研究。該網絡模型基于模塊化設計思想,包含多個高效率的ShuffleNet單元,通過運用分組卷積與深度可分離卷積技術極大改善了傳統卷積操作的運算效率;同時使用通道混洗方法克服了通道分組帶來的約束,改進了網絡的損失精度。實驗分析表明,所提網絡模型可有效用于復雜工況下高速列車輪對軸承故障診斷,相比傳統卷積神經網絡、殘差網絡和Xception等當前深度神經網絡模型,在保證診斷精度的同時,運行效率得到大幅提升。這為深度神經網絡技術應用于工程實際,克服計算機硬件條件限制提供了一條新的途徑。

     

  • 圖  1  分組卷積

    Figure  1.  Group convolution

    圖  2  標準卷積操作

    Figure  2.  Classical convolution operation

    圖  3  深度可分離卷積操作。(a)DWCnov操作;(b)PWConv操作

    Figure  3.  Depthwise separable convolutionoperation: (a) DWCnov operation; (b) PWConv operation

    圖  4  (a)通道孤立與(b)通道混洗的區別

    Figure  4.  Differencebetween (a) channel isolation and (b) channel shuffle

    圖  5  通道混洗操作

    Figure  5.  Channel shuffle operation

    圖  6  ShuffleNet單元結構。(a)ShuffleNet單元1; (b)ShuffleNet單元2

    Figure  6.  Architecture of ShuffleNetunit: (a) ShuffleNet unit 1; (b) ShuffleNet unit 2

    圖  7  ShuffleNet網絡模型結構

    Figure  7.  Architecture of ShuffleNet model

    圖  8  高速列車軸承綜合實驗臺

    Figure  8.  Wheelset bearing comprehensive test rig of high-speed train

    圖  9  故障輪對軸承。(a)內圈故障;(b)外圈故障

    Figure  9.  Wheelset bearing: (a) inner race fault; (b) outer race fault

    圖  10  所提網絡的分類準確度

    Figure  10.  Classification accuracy of the proposed network

    圖  11  不同方法的分類準確度

    Figure  11.  Classificationaccuracy of different methods

    圖  12  4個ShuffleNet單元網絡模型不同階段的可視化結果。(a)網絡輸入端;(b)卷積后;(c)首個ShuffleNet單元后;(d)第二個ShuffleNet單元后;(e)第三個ShuffleNet單元后;(f)第四個ShuffleNet單元后;(g)GAP后

    Figure  12.  Visualization results of the proposed network with 4 ShuffleNet units at different stages: (a) model input; (b) after convolution operation; (c) after the first ShuffleNet unit; (d) after the second ShuffleNet unit; (e) after the third ShuffleNet unit; (f)after the fourth ShuffleNet unit; (g) after the GAP

    圖  13  3個ShuffleNet單元網絡模型的不同階段可視化結果。(a)網絡輸入端;(b)卷積后;(c)首個ShuffleNet單元后;(d)第二個ShuffleNet單元后;(e)第三個ShuffleNet單元后;(f)GAP后

    Figure  13.  Visualization results of the proposed network with 3 ShuffleNet units at different stages: (a) model input; (b) after convolution operation; (c) after the first ShuffleNet unit; (d) after the second ShuffleNet unit; (e) after the third ShuffleNet unit; (f) after the GAP

    表  1  網絡參數設置

    Table  1.   Parameter settings of network

    SequencenumberStructure nameParameter valuesOutput
    1Standard convolution layerConv(3,3,1,64)32×32
    2ShuffleNet unit1GConv(1,1,1,64)32×32
    DWConv(3,3,1,64)
    GConv(1,1,1,64)
    3ShuffleNet unit2AVG pool
    (3,3,2,64)
    GConv(1,1,1,64)16×16
    DWConv(3,3,2,64)
    GConv(1,1,1,64)
    4ShuffleNet unit1GConv(1,1,1,128)16×16
    DWConv(3,3,1,128)
    GConv(1,1,1,128)
    5ShuffleNet unit2AVG pool
    (3,3,2,128)
    GConv(1,1,1,128)8×8
    DWConv(3,3,2,128)
    GConv(1,1,1,128)
    6GAP256×1
    7Dropout256×1
    8Fully connected output layer 3
    下載: 導出CSV

    表  2  實驗數據

    Table  2.   Experimental data

    Sequence numberRotational speed/
    (r·min?1)
    Speed/
    (km·h?1)
    LoadInner race faultOuter race faultNormal
    C11200200No100010001000
    C2Static100010001000
    C3Dynamic100010001000
    C41500250No100010001000
    C5Static100010001000
    C6Dynamic100010001000
    C71800300No100010001000
    C8Static100010001000
    C9Dynamic100010001000
    C102100350No100010001000
    C11Static100010001000
    C12Dynamic100010001000
    下載: 導出CSV

    表  3  不同分組數的對比結果

    Table  3.   Comparison result of different groups

    Group numberTest accuracy/
    %
    Time/sNumber of model parametersFlops
    TrainingTesting
    G=299.991014610.875062730991874
    G=499.991026611.333014717360386
    G=899.991046511.832003510806786
    下載: 導出CSV

    表  4  不同方法的運行效率對比

    Table  4.   Comparison of operation efficiency of different methods

    ModelTime/sNumber of model parametersFlops
    TrainingTesting
    Proposed model1023211.145062730991874
    CNN1336312.36668675567444224
    ResNets1472615.44677251571835136
    Xception1431013.6692739115999488
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Sun R B, Yang Z B, Zhai Z, et al. Sparse representation based on parametric impulsive dictionary design for bearing fault diagnosis. Mech Syst Signal Process, 2019, 122: 737 doi: 10.1016/j.ymssp.2018.12.054
    [2] Wang B, Lei Y G, Yan T, et al. Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery. Neurocomputing, 2020, 379: 117 doi: 10.1016/j.neucom.2019.10.064
    [3] Zhang L J, Rong Y L, Liu K, et al. State pre-warning and optimization for rotating-machinery maintenance. Chin J Eng, 2017, 39(7): 1094

    章立軍, 榮銀龍, 劉凱, 等. 旋轉機械設備狀態預警與維修優化. 工程科學學報, 2017, 39(7):1094
    [4] Dong S J, Luo T H, Zhong L, et al. Fault diagnosis of bearing based on the kernel principal component analysis and optimized k-nearest neighbour model. J Low Freq Noise Vib Active Control, 2017, 36(4): 354 doi: 10.1177/1461348417744302
    [5] Shao K X, Fu W L, Tan J W, et al. Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris Hawks optimization-based SVM for fault diagnosis of rolling bearing. Measurement, 2021, 173: 108580 doi: 10.1016/j.measurement.2020.108580
    [6] Wang D, Tsui K L. Two novel mixed effects models for prognostics of rolling element bearings. MechSyst Signal Process, 2018, 99: 1
    [7] Wang B, Lei Y G, Li N P, et al. Deep separable convolutional network for remaining useful life prediction of machinery. MechSystSignal Process, 2019, 134: 106330
    [8] Li X, Zhang W, Ding Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. ReliabEngSystSaf, 2019, 182: 208
    [9] Dong X F, Lian J J, Wang H J. Vibration source identification of offshore wind turbine structure based on optimized spectral kurtosis and ensemble empirical mode decomposition. Ocean Eng, 2019, 172: 199 doi: 10.1016/j.oceaneng.2018.11.030
    [10] Zou Y Y, de Zhang Y, Mao H C. Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning. Alex Eng J, 2021, 60(1): 1209 doi: 10.1016/j.aej.2020.10.044
    [11] Shao H D, Jiang H K, Wang F A, et al. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet. ISA Trans, 2017, 69: 187 doi: 10.1016/j.isatra.2017.03.017
    [12] Wang X, Qin Y, Wang Y, et al. ReLTanh: An activation function with vanishing gradient resistance for SAE-based DNNs and its application to rotating machinery fault diagnosis. Neurocomputing, 2019, 363: 88 doi: 10.1016/j.neucom.2019.07.017
    [13] Deng F Y, Ding H, Yang S P, et al. An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis. Meas Sci Technol, 2021, 32(2): 024002 doi: 10.1088/1361-6501/abb917
    [14] Wang F T, Liu X F, Deng G, et al. Remaining life prediction method for rolling bearing based on the long short-term memory network. Neural Process Lett, 2019, 50(3): 2437 doi: 10.1007/s11063-019-10016-w
    [15] Zhang X, Wan S T, He Y L, et al. Teager energy spectral kurtosis of wavelet packet transform and its application in locating the sound source of fault bearing of belt conveyor. Measurement, 2021, 173: 108367 doi: 10.1016/j.measurement.2020.108367
    [16] Chen H P, Hu N Q, Cheng Z, et al. A deep convolutional neural network based fusion method of two-direction vibration signal data for health state identification of planetary gearboxes. Measurement, 2019, 146: 268 doi: 10.1016/j.measurement.2019.04.093
    [17] Zhang W, Li C H, Peng G L, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech Syst Signal Process, 2018, 100: 439 doi: 10.1016/j.ymssp.2017.06.022
    [18] Peng D D, Liu Z L, Wang H, et al. A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains. IEEE Access, 2019, 7: 10278 doi: 10.1109/ACCESS.2018.2888842
    [19] Hoang D T, Kang H J. A survey on Deep Learning based bearing fault diagnosis. Neurocomputing, 2019, 335: 327 doi: 10.1016/j.neucom.2018.06.078
    [20] KrizhevskyA, SutskeverI, HintonGE. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84 doi: 10.1145/3065386
    [21] Howard A G, Zhu M L, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv preprint online (2017-4-17) [2020-12-09].https://arxiv.org/abs/1704.04861
    [22] He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification // 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, 2015: 1026
    [23] Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848
    [24] Hoang D T, Kang H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. CognSystRes, 2019, 53: 42
    [25] Chollet F. Xception: deep learning with depthwise separable convolutions //2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 1800
  • 加載中
圖(13) / 表(4)
計量
  • 文章訪問數:  2036
  • HTML全文瀏覽量:  247
  • PDF下載量:  73
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-09
  • 網絡出版日期:  2021-10-12
  • 刊出日期:  2021-11-25

目錄

    /

    返回文章
    返回