Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films
-
摘要: 采用LiF?HCl混合溶液刻蝕法刻蝕Ti3AlC2得到Ti3C2Tx(MXene)膠體溶液,通過真空抽濾法抽濾MXene膠體溶液得到柔性MXene薄膜。使用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、能量色散譜(EDS)和X射線光電子能譜(XPS)等方法表征MXene的物相、形貌及化學元素,并采用循環伏安、恒電流充放電、交流阻抗法等電化學測試手段研究MXene薄膜電極的電化學性能。研究顯示:當電解液為H2SO4,MXene薄膜的厚度為6.6 μm時,在5 mV·s?1掃速下質量比電容達到228 F·g?1;同時隨著掃速從5 mV·s?1提升至100 mV·s?1時,電容保持率為51%,是40.2 μm厚度MXene薄膜電極的3倍。該研究展示酸性電解液和較薄的薄膜厚度有利于提高MXene材料基超級電容器的性能。Abstract: With the rapid growth in the demand for portable/wearable electronic products, the demand for high-performance, flexible, and lightweight power is becoming stronger. Given the excellent cyclic stability, high rate of charge/discharge, and high power density of supercapacitors, they have become ideal devices to meet the power requirements of portable/wearable electronic products. The most effective method to enhance supercapacitor performance is to improve the electrode materials. Lately, researchers have concentrated on exploring and developing excellent-performance electrode materials. Two-dimensional (2D) materials are the most prospective supercapacitor materials owing to their outstanding properties. Transition-metal carbides and nitrides (MXene), a novel family of 2D materials, have been found to exhibit relatively better chemical stability, higher surface area and active surface sites, excellent hydrophilicity, and higher electrical conductivity. The earliest explored and the most widely applied MXene is Ti3C2Tx. In several types of energy-storage systems, such as electrochemical hydrogen storage, supercapacitors, and lithium-ion batteries, Ti3C2Tx has shown exceptional performance as potential electrode material. In this work, Ti3C2Tx colloidal solution was prepared by etching Ti3AlC2 with a LiF–HCl mixed solution and a flexible MXene film was obtained via vacuum filtration. The physical structures and morphologies of graphene and chemical elements were characterized via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The capacitance properties of the MXene film electrode were studied via cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The research shows that in H2SO4 electrolyte, the MXene film thickness is 6.6 μm, and the mass-specific capacitance can reach 228 F·g?1 at 5 mV·s?1. When the scanning speed increases to 100 mV·s?1, the capacitance retention rate can reach 51%, which is three times that of the 40.2 μm MXene film electrode. The research shows that acidic electrolyte and thin film are beneficial to improve the performance of MXene supercapacitors.
-
Key words:
- MXene /
- 2D materials /
- film /
- electrochemical properties /
- electrolyte /
- thickness
-
圖 2 MXene薄膜的實物照片和掃描電鏡圖。(a)展開;(b)卷在玻璃棒上;(c)Ti3AlC2;(d)MXene沉淀;(e)MXene薄膜頂視圖;(f)MXene薄膜截面圖;(g)MXene-1薄膜;(h)MXene-2薄膜;(i)MXene-3薄膜
Figure 2. Photoes and SEM image of MXene film: (a) unfolding; (b) rolled on a glass rod; (c) Ti3AlC2; (d) MXene sediment; (e) MXene film; (f) cross-sectional image of MXene film; (g) MXene-1 film; (h) MXene-2 film; (i) MXene-3 film
www.77susu.com -
參考文獻
[1] Kim B C, Hong J Y, Wallace G G, et al. Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mater, 2015, 5(22): 1500959 doi: 10.1002/aenm.201500959 [2] Yan P T, Zhang R J, Jia J, et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources, 2015, 284: 38 doi: 10.1016/j.jpowsour.2015.03.017 [3] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350(6267): 1508 doi: 10.1126/science.aab3798 [4] Zhang Y, Chang C R, Wang S W, et al. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material. Chin J Eng, 2019, 41(5): 646張勇, 常翠榮, 王詩文, 等. 類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能. 工程科學學報, 2019, 41(5):646 [5] Yang T, Liu H J, Bai F, et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. Int J Miner Metall Mater, 2020, 27(2): 220 doi: 10.1007/s12613-019-1910-x [6] Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117(9): 6225 doi: 10.1021/acs.chemrev.6b00558 [7] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4248 doi: 10.1002/adma.201102306 [8] Xia Q X, Fu J J, Yun J M, et al. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv, 2017, 7(18): 11000 doi: 10.1039/C6RA27880A [9] Couly C, Alhabeb M, Van Aken K L, et al. Asymmetric flexible mxene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater, 2018, 4(1): 1700339 doi: 10.1002/aelm.201700339 [10] Hu Q K, Sun D D, Wu Q H, et al. MXene: a new family of promising hydrogen storage medium. J Phys Chem A, 2013, 117(51): 14253 doi: 10.1021/jp409585v [11] Boota M, Anasori B, Voigt C A, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater, 2016, 28(7): 1517 doi: 10.1002/adma.201504705 [12] Ghidiu M, Kota S, Halim J, et al. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater, 2017, 29(3): 1099 doi: 10.1021/acs.chemmater.6b04234 [13] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78 doi: 10.1038/nature13970 [14] Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8(17): 9128 doi: 10.1039/C6NR01462C [15] Wen Y Y, Rufford T E, Chen X Z, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368 doi: 10.1016/j.nanoen.2017.06.009 [16] Zhao M Q, Ren C E, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater, 2015, 27(2): 339 doi: 10.1002/adma.201404140 [17] Ren Y Y, Zhu J F, Wang L, et al. Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett, 2018, 214: 84 doi: 10.1016/j.matlet.2017.11.060 [18] Xu S K, Wei G D, Li J Z, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem Eng J, 2017, 317: 1026 doi: 10.1016/j.cej.2017.02.144 [19] Tang Y, Zhu J F, Wu W L, et al. Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance. J Electrochem Soc, 2017, 164(4): A923 doi: 10.1149/2.0041706jes [20] Yang C H, Que W X, Yin X T, et al. Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta, 2017, 225: 416 doi: 10.1016/j.electacta.2016.12.173 [21] Huang Y Y, Li G H, Zhao B, et al. Preparation and energy storage properties of V2O5/MXene nanocomposites. Chin J Eng, 2020, 42(8): 1018黃瑩瑩, 李庚輝, 趙博, 等. V2O5/MXene納米復合材料制備及儲能性能. 工程科學學報, 2020, 42(8):1018 [22] Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc, 2013, 135(43): 15966 doi: 10.1021/ja405735d [23] Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043 [24] Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30: 603 doi: 10.1016/j.nanoen.2016.10.062 [25] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4207 doi: 10.1002/adma.201190147 [26] Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589 [27] Li H Y, Hou Y, Wang F X, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater, 2017, 7(4): 1601847 doi: 10.1002/aenm.201601847 [28] Singh S K, Dhavale V M, Boukherroub R, et al. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl Mater Today, 2017, 8: 141 doi: 10.1016/j.apmt.2016.10.002 [29] Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27(23): 3501 doi: 10.1002/adma.201500604 -