<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

自支撐二維Ti3C2Tx(MXene)薄膜電化學性能

武偉 王恩會 楊濤 侯新梅

武偉, 王恩會, 楊濤, 侯新梅. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能[J]. 工程科學學報, 2021, 43(6): 808-815. doi: 10.13374/j.issn2095-9389.2020.12.05.001
引用本文: 武偉, 王恩會, 楊濤, 侯新梅. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能[J]. 工程科學學報, 2021, 43(6): 808-815. doi: 10.13374/j.issn2095-9389.2020.12.05.001
WU Wei, WANG En-Hui, YANG Tao, HOU Xin-mei. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films[J]. Chinese Journal of Engineering, 2021, 43(6): 808-815. doi: 10.13374/j.issn2095-9389.2020.12.05.001
Citation: WU Wei, WANG En-Hui, YANG Tao, HOU Xin-mei. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films[J]. Chinese Journal of Engineering, 2021, 43(6): 808-815. doi: 10.13374/j.issn2095-9389.2020.12.05.001

自支撐二維Ti3C2Tx(MXene)薄膜電化學性能

doi: 10.13374/j.issn2095-9389.2020.12.05.001
基金項目: 國家杰出青年基金資助項目(52025041);國家自然科學基金資助項目(51904021,51902020);中央高校基本科研業務費資助項目(FRF-TP-19-004B2Z,FRF-TP-18-045A1)
詳細信息
    通訊作者:

    E-mail:yangtaoustb@ustb.edu.cn

  • 中圖分類號: TQ134.1+1

Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films

More Information
  • 摘要: 采用LiF?HCl混合溶液刻蝕法刻蝕Ti3AlC2得到Ti3C2Tx(MXene)膠體溶液,通過真空抽濾法抽濾MXene膠體溶液得到柔性MXene薄膜。使用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、能量色散譜(EDS)和X射線光電子能譜(XPS)等方法表征MXene的物相、形貌及化學元素,并采用循環伏安、恒電流充放電、交流阻抗法等電化學測試手段研究MXene薄膜電極的電化學性能。研究顯示:當電解液為H2SO4,MXene薄膜的厚度為6.6 μm時,在5 mV·s?1掃速下質量比電容達到228 F·g?1;同時隨著掃速從5 mV·s?1提升至100 mV·s?1時,電容保持率為51%,是40.2 μm厚度MXene薄膜電極的3倍。該研究展示酸性電解液和較薄的薄膜厚度有利于提高MXene材料基超級電容器的性能。

     

  • 圖  1  (a)Ti3AlC2、MXene沉淀和MXene薄膜的X射線衍射圖;(b)MXene薄膜的XPS全譜圖

    Figure  1.  (a) XRD patterns of Ti3AlC2, MXene sediment, and MXene films; (b) XPS profiles of MXene film

    圖  2  MXene薄膜的實物照片和掃描電鏡圖。(a)展開;(b)卷在玻璃棒上;(c)Ti3AlC2;(d)MXene沉淀;(e)MXene薄膜頂視圖;(f)MXene薄膜截面圖;(g)MXene-1薄膜;(h)MXene-2薄膜;(i)MXene-3薄膜

    Figure  2.  Photoes and SEM image of MXene film: (a) unfolding; (b) rolled on a glass rod; (c) Ti3AlC2; (d) MXene sediment; (e) MXene film; (f) cross-sectional image of MXene film; (g) MXene-1 film; (h) MXene-2 film; (i) MXene-3 film

    圖  3  MXene薄膜的表面元素分布。(a)MXene薄膜;(b)Ti;(c)C;(d)O;(e)F;(e)Cl

    Figure  3.  Distribution of elements of MXene film: (a) MXene film; (b) Ti; (c) C; (d) O; (e) F; (e) Cl

    圖  4  (a)MXene-1在H2SO4、KOH、Na2SO4電解液中在5 mV· s?1時的循環伏安曲線;(b)在H2SO4、KOH、Na2SO4電解液中MXene薄膜的交流阻抗譜圖

    Figure  4.  (a) CV curves of MXene-1 in H2SO4, KOH, and Na2SO4 at 5 mV·s?1; (b) EIS spectra of MXene film electrodes in H2SO4, KOH, and Na2SO4

    圖  5  MXene-1在H2SO4(a)、KOH(b)、Na2SO4(c)電解液中在不同掃描速度下的循環伏安曲線;(d)在不同電解液中比電容隨掃速的變化

    Figure  5.  CV curves of MXene-1 electrode with different scan rates in H2SO4 (a), KOH (b), and Na2SO4 (c); (d) specific capacitance of MXene-1 electrode vs scan rate

    圖  6  MXene-1在H2SO4(a)、KOH(b)和Na2SO4(c)電解液中,在不同充放電電流密度下的充放電曲線

    Figure  6.  GCDs of MXene-1 electrode with different current densities in H2SO4 (a), KOH (b), and Na2SO4 (c)

    圖  7  (a)不同厚度的MXene薄膜在掃描速度5 mV·s?1時循環伏安曲線;(b)不同厚度的MXene薄膜的交流阻抗譜圖

    Figure  7.  (a) CV curves of MXene film with different thicknesses at 5 mV·s?1; (b) EIS spectra of MXene film electrodes

    圖  8  不同厚度的MXene薄膜比電容隨掃描速率變化圖(a)和在電流密度為1 A·g?1的充放電曲線(b)

    Figure  8.  Specific capacitance vs scan rate (a) and GCDs at 1 A·g?1 (b) of MXene electrode with different thicknesses

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kim B C, Hong J Y, Wallace G G, et al. Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mater, 2015, 5(22): 1500959 doi: 10.1002/aenm.201500959
    [2] Yan P T, Zhang R J, Jia J, et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources, 2015, 284: 38 doi: 10.1016/j.jpowsour.2015.03.017
    [3] Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350(6267): 1508 doi: 10.1126/science.aab3798
    [4] Zhang Y, Chang C R, Wang S W, et al. Preparation and supercapacitive performance of pinecone-like NiMoO4/MnO2 composite material. Chin J Eng, 2019, 41(5): 646

    張勇, 常翠榮, 王詩文, 等. 類松果狀NiMoO4/MnO2復合材料的合成及超級電容性能. 工程科學學報, 2019, 41(5):646
    [5] Yang T, Liu H J, Bai F, et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. Int J Miner Metall Mater, 2020, 27(2): 220 doi: 10.1007/s12613-019-1910-x
    [6] Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev, 2017, 117(9): 6225 doi: 10.1021/acs.chemrev.6b00558
    [7] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4248 doi: 10.1002/adma.201102306
    [8] Xia Q X, Fu J J, Yun J M, et al. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv, 2017, 7(18): 11000 doi: 10.1039/C6RA27880A
    [9] Couly C, Alhabeb M, Van Aken K L, et al. Asymmetric flexible mxene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater, 2018, 4(1): 1700339 doi: 10.1002/aelm.201700339
    [10] Hu Q K, Sun D D, Wu Q H, et al. MXene: a new family of promising hydrogen storage medium. J Phys Chem A, 2013, 117(51): 14253 doi: 10.1021/jp409585v
    [11] Boota M, Anasori B, Voigt C A, et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater, 2016, 28(7): 1517 doi: 10.1002/adma.201504705
    [12] Ghidiu M, Kota S, Halim J, et al. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater, 2017, 29(3): 1099 doi: 10.1021/acs.chemmater.6b04234
    [13] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78 doi: 10.1038/nature13970
    [14] Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016, 8(17): 9128 doi: 10.1039/C6NR01462C
    [15] Wen Y Y, Rufford T E, Chen X Z, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38: 368 doi: 10.1016/j.nanoen.2017.06.009
    [16] Zhao M Q, Ren C E, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater, 2015, 27(2): 339 doi: 10.1002/adma.201404140
    [17] Ren Y Y, Zhu J F, Wang L, et al. Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett, 2018, 214: 84 doi: 10.1016/j.matlet.2017.11.060
    [18] Xu S K, Wei G D, Li J Z, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem Eng J, 2017, 317: 1026 doi: 10.1016/j.cej.2017.02.144
    [19] Tang Y, Zhu J F, Wu W L, et al. Synthesis of nitrogen-doped two-dimensional Ti3C2 with enhanced electrochemical performance. J Electrochem Soc, 2017, 164(4): A923 doi: 10.1149/2.0041706jes
    [20] Yang C H, Que W X, Yin X T, et al. Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta, 2017, 225: 416 doi: 10.1016/j.electacta.2016.12.173
    [21] Huang Y Y, Li G H, Zhao B, et al. Preparation and energy storage properties of V2O5/MXene nanocomposites. Chin J Eng, 2020, 42(8): 1018

    黃瑩瑩, 李庚輝, 趙博, 等. V2O5/MXene納米復合材料制備及儲能性能. 工程科學學報, 2020, 42(8):1018
    [22] Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc, 2013, 135(43): 15966 doi: 10.1021/ja405735d
    [23] Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043
    [24] Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30: 603 doi: 10.1016/j.nanoen.2016.10.062
    [25] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4207 doi: 10.1002/adma.201190147
    [26] Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589
    [27] Li H Y, Hou Y, Wang F X, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater, 2017, 7(4): 1601847 doi: 10.1002/aenm.201601847
    [28] Singh S K, Dhavale V M, Boukherroub R, et al. N-doped porous reduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl Mater Today, 2017, 8: 141 doi: 10.1016/j.apmt.2016.10.002
    [29] Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27(23): 3501 doi: 10.1002/adma.201500604
  • 加載中
圖(8)
計量
  • 文章訪問數:  1768
  • HTML全文瀏覽量:  814
  • PDF下載量:  107
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-05
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回