<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈣鈦礦型鋰離子固體電解質Li2x?ySr1?xTi1?yNbyO3的性能

盧佳垚 厲英 倪培遠 唐甜甜

盧佳垚, 厲英, 倪培遠, 唐甜甜. 鈣鈦礦型鋰離子固體電解質Li2x?ySr1?xTi1?yNbyO3的性能[J]. 工程科學學報, 2021, 43(8): 1024-1031. doi: 10.13374/j.issn2095-9389.2020.12.03.004
引用本文: 盧佳垚, 厲英, 倪培遠, 唐甜甜. 鈣鈦礦型鋰離子固體電解質Li2x?ySr1?xTi1?yNbyO3的性能[J]. 工程科學學報, 2021, 43(8): 1024-1031. doi: 10.13374/j.issn2095-9389.2020.12.03.004
LU Jia-yao, LI Ying, NI Pei-yuan, TANG Tian-tian. Performance of perovskite-type Li-ion solid electrolyte Li2x?ySr1?xTi1?yNbyO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1024-1031. doi: 10.13374/j.issn2095-9389.2020.12.03.004
Citation: LU Jia-yao, LI Ying, NI Pei-yuan, TANG Tian-tian. Performance of perovskite-type Li-ion solid electrolyte Li2x?ySr1?xTi1?yNbyO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1024-1031. doi: 10.13374/j.issn2095-9389.2020.12.03.004

鈣鈦礦型鋰離子固體電解質Li2x?ySr1?xTi1?yNbyO3的性能

doi: 10.13374/j.issn2095-9389.2020.12.03.004
基金項目: 國家自然科學基金資助項目(51834004,51774076,51704062)
詳細信息
    通訊作者:

    E-mail:liying@mail.neu.edu.cn

  • 中圖分類號: TM 911

Performance of perovskite-type Li-ion solid electrolyte Li2x?ySr1?xTi1?yNbyO3

More Information
  • 摘要: 采用高溫固相法成功制備了Li2x?ySr1?xTi1?yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7, 0.75, 0.8)鋰離子固體電解質,并通過X射線衍射(XRD)、掃描電子顯微鏡(SEM)、交流阻抗圖譜、恒電位極化等分別研究了各個組分的晶體結構、微觀形貌、離子電導率和電子電導率。XRD顯示當y≤0.70時,材料為立方鈣鈦礦型結構,幾乎沒有雜質相生成。SEM表明隨著摻雜含量的增加材料的晶粒尺寸逐漸增大。Li0.35Sr0.475Ti0.3Nb0.7O3鋰離子固體電解質有著高離子電導率,為3.62×10?5 S·cm?1,其電子電導率為2.55×10?9 S·cm?1,活化能僅為0.29 eV。使用以Li0.35Sr0.475Ti0.3Nb0.7O3為隔膜的LiFePO4/Li半電池經過100圈循環后,放電比容量仍有93.9 mA·h·g?1,容量保持率為90.72%。

     

  • 圖  1  Li2x?ySr1?xTi1?yNbyO3材料的XRD圖譜

    Figure  1.  XRD pattern of Li2x?ySr1?xTi1?yNbyO3

    圖  2  Li2x?ySr1?xTi1?yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7)的擬合XRD圖譜

    Figure  2.  Fitted XRD patterns of Li2x?ySr1?xTi1?yNbyO3 (x = 3y/4, y = 0.25, 0.5, 0.6, 0.7)

    圖  3  Li2x?ySr1?xTi1?yNbyO3材料的SEM圖

    Figure  3.  SEM photographs of Li2x?ySr1?xTi1?yNbyO3

    圖  4  Li2x?ySr1?xTi1?yNbyO3樣品的XPS總譜圖(a)及Sr 3d(b)、Ti 2p(c)、Nb 3d(d)的區域XPS譜圖

    Figure  4.  XPS spectra of Li2x?ySr1?xTi1?yNbyO3 samples (a), regions XPS spectra of Sr 3d (b), Ti 2p (c), Nb 3d (d)

    圖  5  20 ℃時Li2x?ySr1?xTi1?yNbyO3固體電解質的交流阻抗圖譜

    Figure  5.  AC Impedance spectra of Li2x?ySr1?xTi1?yNbyO3 solid electrolytes at 20 ℃

    圖  6  Li2x?ySr1?xTi1?yNbyO3固體電解質的Arrhenius曲線

    Figure  6.  Arrhenius curves of Li2x?ySr1?xTi1?yNbyO3 solid electrolytes

    圖  7  Li2x?ySr1?xTi1?yNbyO3固體電解質的恒電位極化曲線

    Figure  7.  Li2x?ySr1?xTi1?yNbyO3 solid electrolytes constant potential polarization curves

    圖  8  以Li0.35Sr0.475Ti0.3Nb0.7O3為隔膜LiFePO4/Li半電池的充放電曲線圖(a),放電比容量與庫倫效率曲線圖(b),電池的阻抗圖譜(c)

    Figure  8.  Charge-discharge curves (a), discharge capacity and coulombic efficiency curves (b), AC impedance plot (c) of LiFePO4/Li half-cell with Li0.35Sr0.475Ti0.3Nb0.7O3 as the separator

    表  1  Li2x?ySr1?xTi1?yNbyO3 (x=3y/4, y=0.25, 0.5, 0.6, 0.7)的晶胞精修數據

    Table  1.   Crystal refinement data of Li2x?ySr1?xTi1?yNbyO3 (x = 3y/4, y = 0.25, 0.5, 0.6, 0.7)

    SampleLattice
    constant/
    nm
    Unweighted-
    profile R
    factor /%
    Weighted
    profile R
    factor/%
    Goodness
    of fit
    Li0.125Sr0.8125Ti0.75Nb0.25O30.391637.3519.7487.634
    Li0.25Sr0.625Ti0.5Nb0.5O30.393156.2918.2293.709
    Li0.3Sr0.55Ti0.4Nb0.6O30.393716.5408.96310.897
    Li0.35Sr0.475Ti0.3Nb0.7O30.394226.3548.6489.334
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater, 2013, 61(3): 759 doi: 10.1016/j.actamat.2012.10.034
    [2] Sun C W, Liu J, Gong Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017, 33: 363 doi: 10.1016/j.nanoen.2017.01.028
    [3] Zheng F, Kotobuki M, Song S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. J Power Sources, 2018, 389: 198 doi: 10.1016/j.jpowsour.2018.04.022
    [4] Wang C H, Yang Y F, Liu X J, et. al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Inter, 2017, 9: 13694 doi: 10.1021/acsami.7b00336
    [5] Adnan S B R S, Salleh F M, Mohamed N S. Effect of interstitial Li+ ion and vacant site Li+ ion on the properties of novel Li2.05ZnAl0.05Si0.95O4 and Li1.95Zn0.95Cr0.05SiO4 ceramic electrolytes. Ceram Int, 2016, 42(15): 17941 doi: 10.1016/j.ceramint.2016.08.047
    [6] Hallopeau L, Bregiroux D, Rousse G, et al. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. J Power Sources, 2018, 378: 48 doi: 10.1016/j.jpowsour.2017.12.021
    [7] Kokal I, Ramanujachary K V, Notten P H L, et al. Sol-gel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12. Mater Res Bull, 2012, 47(8): 1932 doi: 10.1016/j.materresbull.2012.04.032
    [8] Belous A G. Lithium ion conductors based on the perovskite La23?xLi3xTiO3. J Eur Ceram Soc, 2001, 21(10-11): 1797 doi: 10.1016/S0955-2219(01)00118-2
    [9] Chen C H, Amine K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics, 2001, 144(1-2): 51 doi: 10.1016/S0167-2738(01)00884-0
    [10] Mitsuishi K, Ohnishi T, Tanaka Y, et al. Nazca Lines by La ordering in La2/3–xLi3xTiO3 ion-conductive perovskite. Appl Phys Lett, 2012, 101(7): 073903 doi: 10.1063/1.4744886
    [11] Yu R, Du Q X, Zou B K, et al. Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries. J Power Sources, 2016, 306: 623 doi: 10.1016/j.jpowsour.2015.12.065
    [12] Chen C H, Xie S, Sperling E, et al. Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system. Solid State Ionics, 2004, 167(3-4): 263 doi: 10.1016/j.ssi.2004.01.008
    [13] Kong Y Z, Li Y, Lu J Y, et al. Conductivity and electrochemical stability of perovskite-structured lithium-strontium-niobium-hafnium-oxide solid Li-ion conductors. J Mater Sci:Mater Electron, 2017, 28(12): 8621 doi: 10.1007/s10854-017-6586-2
    [14] Huang B, Xu B Y, Li Y T, et al. Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. ACS Appl Mater Interfaces, 2016, 8(23): 14552 doi: 10.1021/acsami.6b03070
    [15] Kong Y Z, Li Y, Li J W, et al. Li ion conduction of perovskite Li0.375Sr0.4375Ti0.25Ta0.75O3 and related compounds. Ceram Int, 2018, 44(4): 3947 doi: 10.1016/j.ceramint.2017.11.186
    [16] Kong Y Z, Li Y, Lu J Y, et al. Effect of doping (Al, La, Sm) on the conductivity of Li0.375Sr0.4375Hf0.25Ta0.75O3 ceramics. Mater Res Express, 2017, 4(9): 095504 doi: 10.1088/2053-1591/aa8ba7
    [17] Lu J Y, Li Y. Conductivity and stability of Li3/8Sr7/16?3x/2LaxZr1/4Ta3/4O3 superionic solid electrolytes. Electrochimica Acta, 2018, 282: 409 doi: 10.1016/j.electacta.2018.06.085
    [18] Mo S S, Lu P H, Ding F, et al. High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)-5Li3PO4 glass electrolyte. Solid State Ionics, 2016, 296: 37 doi: 10.1016/j.ssi.2016.09.002
    [19] Cheng S, Smith D M, Li C Y. Anisotropic ion transport in a poly(ethylene oxide)-LiClO4 solid state electrolyte templated by graphene oxide. Macromolecules, 2015, 48(13): 4503 doi: 10.1021/acs.macromol.5b00972
    [20] Lu D L, Ma J M, Wu J L, et al. Preparation and electrochemical properties of Li0.33SrxLa0.56?2/3xTiO3? based solid-state ionic supercapacitor. Ceram Int, 2019, 45(2): 2584 doi: 10.1016/j.ceramint.2018.10.192
    [21] Sotomayor M E, Várez A, Bucheli W, et al. Structural characterisation and Li conductivity of Li1/2?xSr2xLa1/2?xTiO3 (0< x< 0.5) perovskites. Ceram Int, 2013, 39(8): 9619 doi: 10.1016/j.ceramint.2013.05.083
    [22] Teranishi T, Kouchi A, Hayashi H, et al. Dependence of the conductivity of polycrystalline Li0.33BaxLa0.56-2/3xTiO3 on Ba loading. Solid State Ionics, 2014, 263: 33 doi: 10.1016/j.ssi.2014.05.001
    [23] Wei Q, Cui W, Long X, et al. A investigation on the surface state of La1?xMx CoO3(M-Ca, Sr) perovskite oxides by XPS. Chem Res Chin Univ, 1990, 11(11): 1227 doi: 10.3321/j.issn:0251-0790.1990.11.013

    魏詮, 崔巍, 龍驤, 等. La(1?x)MxCoO3(M=Ca, Sr)表面狀態的XPS研究. 高等學校化學學報, 1990, 11(11):1227 doi: 10.3321/j.issn:0251-0790.1990.11.013
    [24] Yu K, Jin L, Li Y, et al. Structure and conductivity of perovskite Li0.355La0.35Sr0.3Ti0.995M0.005O3 (M = Al, Co and In) ceramics. Ceram Int, 2019, 45(18): 23941 doi: 10.1016/j.ceramint.2019.08.012
    [25] Ofoegbuna T, Darapaneni P, Sahu S, et al. Stabilizing the B-site oxidation state in ABO3 perovskite nanoparticles. Nanoscale, 2019, 11(30): 14303 doi: 10.1039/C9NR04155A
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  1168
  • HTML全文瀏覽量:  334
  • PDF下載量:  73
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-03
  • 網絡出版日期:  2021-03-27
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回