<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Ba3Ca1+xNb2?xO9?δ復合鈣鈦礦型固體電解質性能研究

丁玉石 厲英

丁玉石, 厲英. Ba3Ca1+xNb2?xO9?δ復合鈣鈦礦型固體電解質性能研究[J]. 工程科學學報, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
引用本文: 丁玉石, 厲英. Ba3Ca1+xNb2?xO9?δ復合鈣鈦礦型固體電解質性能研究[J]. 工程科學學報, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
DING Yu-shi, LI Ying. Transport properties of Ba3Ca1+xNb2?xO9?δ composite perovskite oxides[J]. Chinese Journal of Engineering, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
Citation: DING Yu-shi, LI Ying. Transport properties of Ba3Ca1+xNb2?xO9?δ composite perovskite oxides[J]. Chinese Journal of Engineering, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003

Ba3Ca1+xNb2?xO9?δ復合鈣鈦礦型固體電解質性能研究

doi: 10.13374/j.issn2095-9389.2020.12.03.003
基金項目: 國家自然科學基金資助項目(51774076,51834004,51704063)
詳細信息
    通訊作者:

    E-mail:liying@mail.neu.edu.cn

  • 中圖分類號: TF01;O77

Transport properties of Ba3Ca1+xNb2?xO9?δ composite perovskite oxides

More Information
  • 摘要: 高溫質子導體固體電解質Ba3Ca1+xNb2?xO9?δ化學性質穩定,中低溫電導率較高,具有較好的應用前景。采用固相合成法制備得到了復合鈣鈦礦相的Ba3Ca1+xNb2?xO9?δx=0、0.10、0.18、0.30)材料。隨著Ca摻雜量的增加Ba3Ca1+xNb2?xO9?δ樣品的電導率先增加后降低,x=0.18的樣品電導率最高。Ba3Ca1+xNb2?xO9?δ材料在含氫中的電子空穴遷移數較低,當溫度低于750 ℃時,材料中質子導電為主;當溫度達800 ℃后,材料中氧離子導電為主。x=0.10的樣品質子遷移數最高,隨著摻雜量的增加樣品氧離子遷移數逐漸增大,質子遷移數逐漸降低。

     

  • 圖  1  在1600 ℃燒結10 h后的Ba3Ca1+xNb2?xO9?δx=0、0.10、0.18、0.30)樣品的XRD圖

    Figure  1.  XRD pattern of Ba3Ca1+xNb2?xO9?δ (x=0, 0.10, 0.18, and 0.30) specimen, sintered at 1600 ℃ for 10 h

    圖  2  Ba3Ca1+xNb2?xO9?δx=0、0.10、0.18、0.30)樣品的電導率隨溫度變化曲線

    Figure  2.  Temperature?dependent conductivity of Ba3Ca1+xNb2?xO9?δ (x=0, 0.10, 0.18, and 0.30) specimen

    圖  3  Ba3Ca1.18Nb1.82O9?δ樣品的電導率隨氧分壓的變化曲線。(a)$ {P_{{{\rm{H}}_2}{\rm{O}}}}$=0.62 kPa;(b)$ {P_{{{\rm{H}}_2}{\rm{O}}}}$=3.17 kPa

    Figure  3.  Oxygen partial pressure?dependent conductivity of Ba3Ca1.18Nb1.82O9?δ: (a) $ {P_{{{\rm{H}}_2}{\rm{O}}}}$=0.62 kPa; (b) $ {P_{{{\rm{H}}_2}{\rm{O}}}}$=3.17 kPa

    圖  4  含氫氣氛中Ba3Ca1+xNb2?xO9?δx=0、0.10、0.18、0.30)樣品的載流子遷移數隨溫度變化曲線

    Figure  4.  Change in the proton, oxygen vacancy, and hole transport numbers of Ba3Ca1+xNb2?xO9?δ (x=0, 0.10, 0.18, and 0.30) in Ar?2%H2

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kreuer K D. Proton-conducting oxides. Annu Rev Mater Res, 2003, 33(1): 333 doi: 10.1146/annurev.matsci.33.022802.091825
    [2] Marthinsen A, Wahnstr?m G. Percolation transition in hole-conducting acceptor-doped Barium zirconate. Chem Mater, 2020, 32(13): 5558 doi: 10.1021/acs.chemmater.0c00515
    [3] Zhang J Y, Zhang Z T. Solid electrolyte based on perovskite-type BaCeO3 and SrCeO3. J Univ Sci Technol Beijing, 2000, 22(3): 249 doi: 10.3321/j.issn:1001-053X.2000.03.016

    張俊英, 張中太. BaCeO3和SrCeO3基鈣鈦礦型固體電解質. 北京科技大學學報, 2000, 22(3):249 doi: 10.3321/j.issn:1001-053X.2000.03.016
    [4] Zheng M H, Zhen X X, Zhao Z G. Preparation and characterization of Yb doped SrCeO3 based high temperature proton conductor. J Univ Sci Technol Beijing, 1993, 15(3): 310

    鄭敏輝, 甄秀欣, 趙志剛. SrCeO3基高溫質子導體的制備與性能測定. 北京科技大學學報, 1993, 15(3):310
    [5] Zhou Y, Guan X, Zhou H, et al. Strongly correlated perovskite fuel cells. Nature, 2016, 534(7606): 231 doi: 10.1038/nature17653
    [6] Bi L, Da'As E H, Shafi S P. Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem Commun, 2017, 80: 20 doi: 10.1016/j.elecom.2017.05.006
    [7] Xie D, Ling A, Yan D, et al. A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell. Electrochimica Acta, 2020, 344: 136143 doi: 10.1016/j.electacta.2020.136143
    [8] Tong Y C, Wang Y, Cui C S, et al. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. J Power Sources, 2020, 457: 228036 doi: 10.1016/j.jpowsour.2020.228036
    [9] Ishiyama T, Kishimoto H, Develos-Bagarinao K, et al. Correlation between dissolved protons in nickel-doped BaZr0.1Ce0.7Y0.1 Yb0.1O3?δ and its electrical conductive properties. Inorg Chem, 2017, 56(19): 11876 doi: 10.1021/acs.inorgchem.7b01875
    [10] Tong Y C, Meng X, Luo T, et al. Protonic ceramic electrochemical cell for efficient separation of hydrogen. ACS Appl Mater Interfaces, 2020, 12(23): 25809 doi: 10.1021/acsami.0c04024
    [11] Montaleone D, Mercadelli E, Escolástico S, et al. All-ceramic asymmetric membranes with superior hydrogen permeation. J Mater Chem A, 2018, 6(32): 15718 doi: 10.1039/C8TA04764B
    [12] Morejudo S H, Zanón R, Escolástico S, et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 2016, 353(6299): 563 doi: 10.1126/science.aag0274
    [13] Li Y, Wang C Z, Zhang Z L, et al. A hydrogen sensor using SrCe0.95Yb0.05O3?α as proton conductor and YHx+YH2?z as reference electrode for determining hydrogen pressure in solid steel. J Mater Sci Technol, 2010, 26(10): 957 doi: 10.1016/S1005-0302(10)60155-7
    [14] Kalyakin A S, Lyagaeva J G, Chuikin A Y, et al. A high-temperature electrochemical sensor based on CaZr0.95Sc0.05O3?δ for humidity analysis in oxidation atmospheres. J Solid State Electrochem, 2019, 23(1): 73 doi: 10.1007/s10008-018-4108-7
    [15] Ju L C, L Y, Man W K, et al. Preparation and property of silicon sensor auxiliary electrodes based on the CaF2—SiO2 system. Chin J Eng, 2016, 38(4): 476

    鞠靚辰, 李楊, 滿文寬, 等. CaF2—SiO2型硅傳感器輔助電極的制備及其定硅性能. 工程科技學報, 2016, 38(4):476
    [16] Zhu Z W, Guo E Y, Wei Z L, et al. Tailoring Ba3Ca1.18Nb1.82O9?δ with NiO as electrolyte for proton-conducting solid oxide fuel cells. J Power Sources, 2018, 373: 132 doi: 10.1016/j.jpowsour.2017.10.091
    [17] Jaiswal S K, Yoon K J, Son J W, et al. Synthesis and investigation on stability and electrical conductivity of Ti-doped Ba3CaTa2?xTixO9 (0≤x≤1.0) complex oxides. J Alloys Compd, 2019, 775: 736 doi: 10.1016/j.jallcom.2018.10.185
    [18] Wang S W, Chen Y, Fang S M, et al. Novel chemically stable Ba3Ca1.18Nb1.82?xYxO9?δ proton conductor: Improved proton conductivity through tailored cation ordering. Chem Mater, 2014, 26(6): 2021 doi: 10.1021/cm403684b
    [19] Ananyev M V, Farlenkov A S, Kurumchin E K. Isotopic exchange between hydrogen from the gas phase and proton-conducting oxides: Theory and experiment. Int J Hydrog Energy, 2018, 43(29): 13373 doi: 10.1016/j.ijhydene.2018.05.150
    [20] Sa?inas R, Einarsrud M A, Grande T. Toughening of Y-doped BaZrO3 proton conducting electrolytes by hydration. J Mater Chem A, 2017, 5(12): 5846 doi: 10.1039/C6TA11022C
    [21] Bohn H G, Schober T, Mono T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9?δ. I. Electrical conductivity. Solid State Ionics, 1999, 117(3-4): 219 doi: 10.1016/S0167-2738(98)00420-2
    [22] Liang K C, Du Y, Nowick A S. Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics, 1994, 69(2): 117 doi: 10.1016/0167-2738(94)90399-9
    [23] Ding Y S, Li Y, Huang W L. Influence of grain interior and grain boundaries on transport properties of scandium-doped calcium zirconate. J Am Ceram Soc, 2020, 103(4): 2653 doi: 10.1111/jace.16968
    [24] Ding Y S, Li Y, Zhang C J, et al. Effect of grain interior and grain boundaries on transport properties of Sc-doped CaHfO3. J Alloys Compd, 2020, 834: 155126 doi: 10.1016/j.jallcom.2020.155126
    [25] Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1-2): 87 doi: 10.1016/0167-2738(95)00008-T
  • 加載中
圖(4)
計量
  • 文章訪問數:  501
  • HTML全文瀏覽量:  325
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-03
  • 網絡出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回