<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

二氯甲烷和甲苯對咪唑離子液體結構和性質及鋁電沉積的影響

田國才 袁青香

田國才, 袁青香. 二氯甲烷和甲苯對咪唑離子液體結構和性質及鋁電沉積的影響[J]. 工程科學學報, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002
引用本文: 田國才, 袁青香. 二氯甲烷和甲苯對咪唑離子液體結構和性質及鋁電沉積的影響[J]. 工程科學學報, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002
TIAN Guo-cai, YUAN Qing-xiang. Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid[J]. Chinese Journal of Engineering, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002
Citation: TIAN Guo-cai, YUAN Qing-xiang. Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid[J]. Chinese Journal of Engineering, 2021, 43(8): 1037-1046. doi: 10.13374/j.issn2095-9389.2020.12.03.002

二氯甲烷和甲苯對咪唑離子液體結構和性質及鋁電沉積的影響

doi: 10.13374/j.issn2095-9389.2020.12.03.002
基金項目: 國家自然科學基金資助項目(51774158,51264021);云南省中青年學術技術帶頭人后備人才培養資助項目(2011CI013)
詳細信息
    通訊作者:

    E-mail:tiangc01@163.com

  • 中圖分類號: TF821

Effect of dichloromethane and toluene on the structure, property, and Al electrodeposition in 1-butyl-3-methylimidazolium chloroaluminate ionic liquid

More Information
  • 摘要: 離子液體電沉積鋁技術具有廣闊的應用前景,而添加劑是提高鋁鍍層性能的有效方法,但相關作用機制還有待明確。本文應用量子化學和分子動力學模擬研究了二氯甲烷(DCM)和甲苯(C7H8)對氯化-1-丁基-3-甲基咪唑/三氯化鋁([BMIM]Cl/AlCl3)體系的微觀結構、物理化學性質和鋁電沉積的影響。發現DCM易與陰、陽離子形成氫鍵,分布在陰陽離子之間使得陰陽離子間距離增加、相互作用能減小, 導致陰陽離子擴散能力增強、鋁配離子更傾向以${\rm{A}}{{\rm{l}}_2}{\rm{Cl}}_7^ -$形式存在,體系黏度降低電導率增加,因而對體系電化學性質提升很大,而且DCM起到了晶粒細化和整平作用,從而可以得到鏡面光亮的沉積層,所得結果與實驗值吻合較好。C7H8主要分布在陽離子周圍,與陽離子有較強相互作用,在沉積過程中吸附于電極表面的凸出部分,抑制了電活性離子的還原而主要起到整平作用,其對陰離子和陽離子之間的相關作用的影響比DCM小,因而體系電化學性質提升不如DCM。

     

  • 圖  1  模擬用到的陽離子和分子的結構以及相應原子的類型。(a)[BMIM]+;(b)AlCl3;(c)C7H8;(d)DCM

    Figure  1.  Structure of the molecules and cation, and the corresponding atom types: (a) [BMIM]+; (b) AlCl3; (c) C7H8; (d) DCM

    圖  2  B3LYP/6-311++G(d,p)方法得到的離子液體與添加劑作用的穩定構型。(a)[BMIM]Al2Cl7/DCM;(b)[BMIM]Al2Cl7/C7H8

    Figure  2.  Stable structures of [BMIM]Al2Cl7 with additives and with B3LYP/6-311++G(d,p) method: (a) [BMIM]Al2Cl7/DCM; (b) [BMIM]Al2Cl7/C7H8

    圖  3  B3LYP/6-311++G(d,p)方法得到的前線軌道圖。(a)[BMIM]Al2Cl7;(b)C7H8;(c)DCM;(d)[BMIM]Al2Cl7/DCM;(e)[BMIM]Al2Cl7/C7H8

    Figure  3.  Frontier orbital distribution from B3LYP/6-311++G(d,p) method: (a) [BMIM]Al2Cl7; (b) C7H8; (c) DCM; (d) [BMIM]Al2Cl7/DCM; (e) [BMIM]Al2Cl7/DCM

    圖  4  MD模擬計算得到體系中離子間的徑向分布函數gA-B(r)。(a)[BMIM]+${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $;(b)${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $與Cl?;(c)[BMIM]+與M(M=DCM、C7H8);(d)${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $與M(M=DCM、C7H8)

    Figure  4.  Calculated radial distribution functions gA-B(r) for particle A and B from MD simulation: (a) [BMIM]+-${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $; (b) ${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $-Cl?; (c) [BMIM]+-M(M = DCM, C7H8); (d) ${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $-M(M = DCM、C7H8)

    圖  5  計算得到的三維空間分布圖。(a)[BMIM]+周圍Cl?(綠色)、C7H8(黃色)、DCM(紅色)、${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $(藍色)的三維空間分布;(b)${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $周圍Cl?(綠色)、DCM(紅色)、C7H8(黃色)空間分布

    Figure  5.  Spatial distribution from simulation: (a) Cl? (green), ${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $ (blue), DCM (red), and C7H8 (yellow) around the [BMIM]+; (b) Cl? (green), DCM (red), C7H8 (yellow) around ${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $

    圖  6  DCM和C7H8對體系中各粒子均方根位移(MSD)和擴散系數的影響。(a)[BMIM]+的MSD;(b)${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $的MSD;(c)DCM和C7H8的MSD; (d) 各粒子的擴散系數

    Figure  6.  Effects of DCM and C7H8 on the root-mean-square displacement MSD and diffusion coefficient of particles: (a) MSD of [BMIM]+; (b) MSD of ${\rm{Al}}_{x} {\rm{Cl}}_y^{3x-y} $; (c) MSD of DCM and C7H8; (d) diffusion coefficient

    表  1  B3LYP/6-311++G(d,p)方法得到的體系中各粒子間的相互作用能

    Table  1.   Interaction energy in the system with B3LYP/6-311++G(d,p) method

    MInteraction energy/(kJ·mol?1)
    [BMIM]+ and M${\rm{A}}{{\rm{l}}_2}{\rm{Cl}}_7^ - $ and M[BMIM]+M and ${\rm{A}}{{\rm{l}}_2}{\rm{Cl}}_7^ - $
    C7H8?27.69?7.27?260.76
    DCM?22.29?21.28?267.99
    下載: 導出CSV

    表  2  B3LYP/6-311++G(d,p)方法得到的體系的相關量化參數

    Table  2.   Quantitative parameters of the system from B3LYP/6-311++G(d,p) method

    Typeμ/
    (10?30 ℃·m)
    EHOMO/
    eV
    ELUMO/
    eV
    ΔE/
    eV
    χ/
    eV
    C7H81.343?9.9132?4.85845.05487.3858
    DCM6.081?8.5991?0.90647.69274.7528
    [BMIM]Al2Cl751.152?8.0239?1.97186.05214.9978
    [BMIM]Al2Cl7/C7H849.127?9.3491?4.87254.47667.1108
    [BMIM]Al2Cl7/DCM44.482?8.1412?1.91956.22175.0303
    下載: 導出CSV

    表  3  計算所得體系中主要粒子的配位數

    Table  3.   Calculated coordination number of the main particles in the system

    Type${\rm{C}}{{\rm{N}}_{({\rm{A}}{{\rm{l}}_x}{\rm{Cl}}_y^{3x - y} - {\rm{C}}{{\rm{l}}^ - })}}$${\rm{C}}{{\rm{N}}_{({{[{\rm{BMIM}}]}^ + } - {\rm{A}}{{\rm{l}}_x}{\rm{Cl}}_y^{3x - y})}}$
    [BMIM]Cl/AlCl30.992.88
    [BMIM]Cl/AlCl3/C7H80.851.81
    [BMIM]Cl/AlCl3/DCM0.681.54
    下載: 導出CSV

    表  4  計算得到的303.14 K和0.1 MPa下體系的黏度(η)與電導率(κ)

    Table  4.   Viscosity (η) and conductivity (κ) of the system from MD simulation at 303.14 K and 0.1 MPa

    Typeη/(mPa·s)κ/(mS·cm?1)
    [BMIM]Cl/AlCl3/C7H811.617.59
    [BMIM]Cl/AlCl3/DCM2.4848.55
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qiu Z X. World aluminum industry and development trend of new technology. Non Ferr Smelt, 2000, 29(2): 1

    邱竹賢. 世界鋁工業與新技術發展趨勢. 有色冶煉, 2000, 29(2):1
    [2] Liu Y X, Li J. Modern Aluminum Electrolysis. Beijing: Metallurgical Industry Press, 2008

    劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008
    [3] Kan H M, Qiu Z X, Zhang G. Low Temperature Aluminum Electrolysis. Shenyang: Northeast University Press, 2009

    闞洪敏, 邱竹賢, 張剛. 低溫鋁電解. 沈陽: 東北大學出版社, 2009
    [4] Lu H M, Qiu Z X. Research progress of low temperature aluminum electrolysis. Light Met, 1997(4): 24

    盧惠民, 邱竹賢. 低溫鋁電解的研究進展. 輕金屬, 1997(4):24
    [5] Deng Y Q. Ionic liquids —— Properties, Preparation and Application. Beijing: China Petrochemical Press, 2006

    鄧友全. 離子液體——性質, 制備與應用. 北京: 中國石化出版社, 2006
    [6] Zhang S J, Lü X M. Ionic liquids: From Basic Research to Industrial Application. Beijing: Science Press, 2006

    張鎖江, 呂興梅. 離子液體: 從基礎研究到工業應用. 北京: 科學出版社, 2006
    [7] Wasserscheid P, Welton T. Ionic Liquids in Synthesis. New Jersey: John Wiley & Sons, 2008
    [8] Zhang M M, Kamavarum V, Reddy R G. New electrolytes for aluminum production: Ionic liquids. JOM, 2003, 55(11): 54 doi: 10.1007/s11837-003-0211-y
    [9] Tian G C, Li J, Hua Y X. Application of ionic liquids in metallurgy of nonferrous metals. Chin J Process Eng, 2009, 9(1): 200 doi: 10.3321/j.issn:1009-606X.2009.01.039

    田國才, 李堅, 華一新. 離子液體在有色金屬冶金中的應用. 過程工程學報, 2009, 9(1):200 doi: 10.3321/j.issn:1009-606X.2009.01.039
    [10] Tian G C, Li J, Hua Y X. Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans Nonferrous Met Soc China, 2010, 20(3): 513 doi: 10.1016/S1003-6326(09)60171-0
    [11] Mohammad A, Inamuddin D. Green Solvents II: Properties and Applications of Ionic Liquids//Tian G C. Application of ionic liquids in extraction and separation of metals. Berlin: Springer Netherlands, 2012: 119
    [12] Tian G C. Ionic liquids as green electrolytes for aluminum and aluminum-alloy production. Mater Res Found, 2019, 54: 249
    [13] Zhong X W, Xiong T, Lu J, et al. Advances of electro-deposition and aluminum refining of aluminum and aluminum alloy in ionic liquid electrolytes system. Nonferrous Met Sci Eng, 2014, 5(2): 44

    鐘熊偉, 熊婷, 陸俊, 等. 離子液體電解質體系鋁及鋁合金電沉積與鋁精煉研究進展. 有色金屬科學與工程, 2014, 5(2):44
    [14] Liu Q S, Xue J L, Zhu J, et al. Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis. J Univ Sci Technol Beijing, 2008, 30(4): 403 doi: 10.3321/j.issn:1001-053X.2008.04.015

    劉慶生, 薛濟來, 朱駿, 等. 添加劑對鋁電解炭基陰極鈉滲透膨脹過程的影響. 北京科技大學學報, 2008, 30(4):403 doi: 10.3321/j.issn:1001-053X.2008.04.015
    [15] Zheng Y, Wang Q, Zheng Y J, et al. Advances in research and application of aluminium electrolysis in ionic liquid systems. Chin J Process Eng, 2015, 15(4): 713 doi: 10.12034/j.issn.1009-606X.215194

    鄭勇, 王倩, 鄭永軍, 等. 離子液體體系電解鋁技術的研究與應用進展. 過程工程學報, 2015, 15(4):713 doi: 10.12034/j.issn.1009-606X.215194
    [16] Fleury V, Kaufman J H, Hibbert D B. Mechanism of a morphology transition in ramified electrochemical growth. Nature, 1994, 367(6462): 435 doi: 10.1038/367435a0
    [17] Yue G K, Lu X M, Zhu Y L, et al. Surface morphology, crystal structure and orientation of aluminium coatings electrodeposited on mild steel in ionic liquid. Chem Eng J, 2009, 147(1): 79 doi: 10.1016/j.cej.2008.11.044
    [18] Abbott A P, Qiu F, Abood H M, et al. Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Phys Chem Chem Phys, 2010, 12(8): 1862 doi: 10.1039/B917351J
    [19] Liu L, Lu X M, Cai Y J, et al. Influence of additives on the speciation, morphology, and nanocrystallinity of aluminium electrodeposition. Aust J Chem, 2012, 65(11): 1523 doi: 10.1071/CH12305
    [20] Ueda M, Hariyama S, Ohtsuka T. Al electroplating on the AZ121 Mg alloy in an EMIC-AlCl3 ionic liquid containing ethylene glycol. J Solid State Electrochem, 2012, 16(11): 3423 doi: 10.1007/s10008-012-1801-9
    [21] Zhang Q Q, Wang Q, Zhang S J, et al. Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. J Solid State Electrochem, 2014, 18(1): 257 doi: 10.1007/s10008-013-2269-y
    [22] Wang Q, Zhang Q Q, Chen B, et al. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. J Electrochem Soc, 2015, 162(8): D320 doi: 10.1149/2.1001507jes
    [23] Wang Q, Chen B, Zhang Q Q, et al. Aluminum deposition from lewis acidic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid ([Bmim]Cl/AlCl3) modified with methyl nicotinate. Chem Electro Chem, 2015, 2(11): 1794
    [24] Sheng P F, Chen B, Shao H B, et al. Electrodeposition and corrosion behavior of nanocrystalline aluminum from a chloroaluminate ionic liquid. Mater Corros, 2015, 66(11): 1338 doi: 10.1002/maco.201508272
    [25] Leng M H. Study on Morphology of Electrodeposition of Aluminum from Ionic Liquid [Dissertation]. Shenyang: Shenyang Normal University, 2015

    冷明浩. 離子液體電沉積鋁微觀形貌研究[學位論文]. 沈陽: 沈陽師范大學, 2015
    [26] Li Z T, Tian G C. Simulation study of the effect of benzene on the structure and properties of 1-ethyl-3-methylimidazolium chloroaluminate. Comput Appl Chem, 2015, 32(9): 1044

    李志濤, 田國才. 苯對1-乙基-3-甲基咪唑三氯化鋁結構與性質影響的模擬研究. 計算機與應用化學, 2015, 32(9):1044
    [27] Lang H Y, Zhang J L, Kang Y H, et al. Effects of lithium bis (oxalato) borate on electrochemical stability of [Emim][Al2Cl7] ionic liquid for aluminum electrolysis. Ionics, 2017, 23(4): 959 doi: 10.1007/s11581-016-1889-5
    [28] Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys, 2006, 8(37): 4265 doi: 10.1039/b607329h
    [29] Robinson J, Osteryoung R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. J Am Chem Soc, 1979, 101(2): 323 doi: 10.1021/ja00496a008
    [30] Pulletikurthi G, B?decker B, Borodin A, et al. Electrodeposition of Al from a 1-butylpyrrolidine-AlCl3 ionic liquid. Prog Nat Sci:Mater Int, 2015, 25(6): 603 doi: 10.1016/j.pnsc.2015.11.003
    [31] Uehara K, Yamazaki K, Gunji T K, et al. Evaluation of key factors for preparing high brightness surfaces of aluminum films electrodeposited from AlCl3-1-ethyl-3-methylimidazolium chloride-organic additive baths. Electrochimica Acta, 2016, 215: 556 doi: 10.1016/j.electacta.2016.08.125
    [32] Kang Y H, Chen S M, Wang Q, et al. Solvation effect of [BMIM]Cl/AlCl3 ionic liquid electrolyte. Ionics, 2019, 25(1): 163 doi: 10.1007/s11581-018-2586-3
    [33] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D. 01 [CP/OL]. Gaussian, Inc. (2009)[2020-11-06]. http://gaussian.com/glossary/g09/.
    [34] de Andrade J, B?es E S, Stassen H. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium CationsForce-field proposal and validation. J Phys Chem B, 2002, 106(51): 13344 doi: 10.1021/jp0216629
    [35] Prampolini G, Campetella M, De Mitri N, et al. Systematic and automated development of quantum mechanically derived force fields: The challenging case of halogenated hydrocarbons. J Chem Theory Comput, 2016, 12(11): 5525 doi: 10.1021/acs.jctc.6b00705
    [36] Kim J H, Lee S H. Molecular dynamics simulation studies of benzene, toluene, and p-xylene in a canonical ensemble. Bull Korean Chem Soc, 2002, 23(3): 441 doi: 10.5012/bkcs.2002.23.3.441
    [37] Lyubartsev A P, Laaksonen A M. DynaMix - a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput Phys Commun, 2000, 128(3): 565 doi: 10.1016/S0010-4655(99)00529-9
    [38] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Oxford University Press, 2017
    [39] Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics. J Chem Phys, 1992, 97(3): 1990 doi: 10.1063/1.463137
    [40] Morrow T I, Maginn E J. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B, 2002, 106(49): 12807 doi: 10.1021/jp0267003
    [41] Dong K, Song Y T, Liu X M, et al. Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B, 2012, 116(3): 1007 doi: 10.1021/jp205435u
    [42] Marekha B A, Kalugin O N, Idrissi A. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: A quantum chemical calculation analysis. Phys Chem Chem Phys, 2015, 17(26): 16846 doi: 10.1039/C5CP02197A
    [43] Zheng Y. Application of Ionic Liquids in Low Temperature Aluminum Electrolysis [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2013

    鄭勇. 離子液體在低溫電解鋁中的應用研究[學位論文]. 北京: 中國科學院大學, 2013
    [44] Xia S, Zhang X M, Huang K, et al. Ionic liquid electrolytes for aluminium secondary battery: Influence of organic solvents. J Electroanal Chem, 2015, 757: 167 doi: 10.1016/j.jelechem.2015.09.022
    [45] Zheng Y, Dong K, Wang Q, et al. Density, viscosity, and conductivity of lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data, 2013, 58(1): 32 doi: 10.1021/je3004904
  • 加載中
圖(6) / 表(4)
計量
  • 文章訪問數:  1004
  • HTML全文瀏覽量:  669
  • PDF下載量:  62
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-03
  • 網絡出版日期:  2021-03-01
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回