<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石粉對赤泥基注漿材料的影響機制

李召峰 陳經棚 楊磊 齊延海 張健 張晨

李召峰, 陳經棚, 楊磊, 齊延海, 張健, 張晨. 石粉對赤泥基注漿材料的影響機制[J]. 工程科學學報, 2021, 43(6): 768-777. doi: 10.13374/j.issn2095-9389.2020.12.01.005
引用本文: 李召峰, 陳經棚, 楊磊, 齊延海, 張健, 張晨. 石粉對赤泥基注漿材料的影響機制[J]. 工程科學學報, 2021, 43(6): 768-777. doi: 10.13374/j.issn2095-9389.2020.12.01.005
LI Zhao-feng, CHEN Jing-peng, YANG Lei, QI Yan-hai, ZHANG Jian, ZHANG Chen. Influence mechanism of limestone powder on red mud-based grouting material[J]. Chinese Journal of Engineering, 2021, 43(6): 768-777. doi: 10.13374/j.issn2095-9389.2020.12.01.005
Citation: LI Zhao-feng, CHEN Jing-peng, YANG Lei, QI Yan-hai, ZHANG Jian, ZHANG Chen. Influence mechanism of limestone powder on red mud-based grouting material[J]. Chinese Journal of Engineering, 2021, 43(6): 768-777. doi: 10.13374/j.issn2095-9389.2020.12.01.005

石粉對赤泥基注漿材料的影響機制

doi: 10.13374/j.issn2095-9389.2020.12.01.005
基金項目: 國家自然科學基金青年基金資助項目(51709158);山東省重大科技創新工程資助項目(2020CXGC011405);山東省自然科學基金資助項目(ZR2020KE006)
詳細信息
    通訊作者:

    E-mail:yanglei@sdu.edu.cn

  • 中圖分類號: X758

Influence mechanism of limestone powder on red mud-based grouting material

More Information
  • 摘要: 為明確石粉摻合料對地聚物材料的作用機理,以赤泥基注漿材料為研究對象,系統研究了石粉摻量和粒徑分布對赤泥基注漿材料漿體性能、力學性能和微觀結構的作用規律,并結合X射線衍射儀(XRD)、壓汞儀(MIP)和掃描電鏡(SEM)等微觀測試手段分析其作用機理。研究表明,結石體力學強度隨石粉摻量的上升先增大后減小,當石粉的質量分數為5%時抗壓強度最高,3 d時可達5.65 MPa,抗壓強度提升幅度為18.94%,同時漿液泌水率上升幅度僅為9.85%,且28 d結石體孔隙率降低了18.35%,因此,5%為石粉在赤泥基注漿材料中的最佳質量分數。在石粉最佳質量分數條件下,隨著石粉平均粒徑減小,漿液凝結時間及泌水率均呈現下降的趨勢;當石粉平均粒徑達到8 μm時,石粉“填充效應”和“成核效應”作用尤為明顯,漿液黏度突升,且3 d和28 d試樣強度分別提升了11.86%和10%,故石粉平均粒徑越小,其對赤泥基注漿材料的提升作用越顯著,赤泥基注漿材料的最佳粉料質量配比為赤泥47.5%,礦粉47.5%,石粉5%;微觀分析證實,石粉在漿液水化歷程中以物理特性參與其中,為Na2O–SiO2–Al2O3–H2O凝膠(N–A–S–H), 水化硅鋁酸鈣凝膠(C–A–S–H)和水化硅酸鈣凝膠(C–S–H)等凝膠提供成核位點,供地聚物凝膠沉淀和生長,加速漿液水化。

     

  • 圖  1  原料的XRD圖。(a)赤泥和礦粉;(b)石粉

    Figure  1.  XRD spectra of materials: (a) RM and BFS; (b) LS

    圖  2  原料粒徑分布曲線。(a)赤泥和礦粉;(b)石粉

    Figure  2.  Particle-size distribution curve of raw materials: (a) RM and BFS; (b) LS

    圖  3  石粉對赤泥基注漿材料凝結時間的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  3.  Effect of limestone powder on setting time of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    圖  4  石粉對赤泥基注漿材料泌水率的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  4.  Effect of limestone powder on bleeding rate of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    圖  5  石粉對赤泥基注漿材料黏度時變性的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  5.  Effect of limestone powder on time-dependent behavior of viscosity of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    圖  6  石粉對赤泥基注漿材料流變性能的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  6.  Effect of limestone powder on rheological property of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    圖  7  石粉對赤泥基注漿材料抗壓強度的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  7.  Effect of limestone powder on compressive strength of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizeps of LS

    圖  8  石粉對赤泥基注漿材料應力–應變特征的影響。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  8.  Effect of limestone powder on stress–strain curves of red mud–based grouting material: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    圖  9  石粉對赤泥基注漿材料孔徑分布和孔隙率的影響。(a)不同質量分數石粉的孔徑分布;(b)不同質量分數石粉的孔隙率;(c)不同平均粒徑石粉的孔徑分布;(d)不同平均粒徑石粉的孔隙率

    Figure  9.  Effect of limestone powder on pore-size distribution and porosity of red mud–based grouting material: (a) pore-size distribution of LS with different mass fractions; (b) porosity of LS with different mass fractions; (c) pore-size distribution of LS with different mean particle sizes; (d) porosity of LS with different mean particle sizes

    圖  10  摻入石粉的赤泥基注漿材料結石體XRD圖。(a)不同質量分數石粉;(b)不同平均粒徑石粉

    Figure  10.  X-ray diffraction spectra of paste matrix of red mud–based grouting material with limestone powder: (a) different mass fractions of LS; (b) different mean particle sizes of LS

    1—Calcite; 2—Hematite; 3—C−S−H; 4—Unnamed zeolite; 5—Boehmite

    圖  11  摻入石粉的赤泥基注漿材料結石體28 d的SEM圖。(a)LS–0;(b)LS–5%;(c)LS–60;(d)LS–8

    Figure  11.  Scanning electron microscopy diagrams of red mud–based grouting materials paste matrix with limestone powder on day 28: (a) LS–0; (b) LS–5%; (c) LS–60; (d) LS–8

    表  1  原料化學組成

    Table  1.   Chemical composition of raw materials %

    Raw materialsSiO2Al2O3Fe2O3CaOMgOSO3Na2OLOI
    RM26.4011.3232.111.570.170.237.706.14
    BFS20.5012.100.5557.205.050.830.361.23
    LS0.530.020.0155.280.550.0143.6
    下載: 導出CSV

    表  2  實驗固體粉料質量配比

    Table  2.   Experimental proportion %

    SampleRMBFSLS
    LS–050500
    LS–5%47.547.55
    LS–10%454510
    LS–15%42.542.515
    LS–20%404020
    LS–bulk47.547.55
    LS–6047.547.55
    LS–3347.547.55
    LS–2147.547.55
    LS–847.547.55
    下載: 導出CSV

    表  3  Herschel–Bulkley模型擬合結果

    Table  3.   Fitting results of Herschel–Bulkley model

    SampleFitting equationR2
    LS–0${\tau = 0.449 + 0.2431{\gamma ^{1.170}}}$0.9932
    LS–5%${\tau = 0.473 + 0.2478{\gamma ^{1.161}}}$0.9936
    LS–10%${\tau = 0.432 + 0.2373{\gamma ^{1.164}}}$0.9944
    LS–15%${\tau = 0.419 + 0.2249{\gamma ^{1.172}}}$0.9944
    LS–20%${\tau = 0.385 + 0.2021{\gamma ^{1.192}}}$0.9950
    LS–bulk${\tau = 0.473 + 0.2478{\gamma ^{1.161}}}$0.9936
    LS–60${\tau = 0.328 + 0.2051{\gamma ^{1.177}}}$0.9960
    LS–33${\tau = 0.331 + 0.1817{\gamma ^{1.211}}}$0.9961
    LS–21${\tau = 0.338 + 0.1938{\gamma ^{1.194}}}$0.9959
    LS–8${\tau = 0.413 + 0.2062{\gamma ^{1.191}}}$0.9944
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tan J W, Cai J M, Huang L C, et al. Feasibility of using microwave curing to enhance the compressive strength of mixed recycled aggregate powder based geopolymer. Constr Build Mater, 2020, 262: 120897 doi: 10.1016/j.conbuildmat.2020.120897
    [2] Duxson P, Fernández-Jiménez A, Provis J L, et al. Geopolymer technology: the current state of the art. J Mater Sci, 2006, 42(9): 2917
    [3] Davidovits J, Huaman L, Davidovits R. Ancient geopolymer in south-American monument. SEM and petrographic evidence. Mater Lett, 2019, 235: 120 doi: 10.1016/j.matlet.2018.10.033
    [4] Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud--coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438

    劉曉明, 唐彬文, 尹海峰, 等. 赤泥—煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438
    [5] Xiao J H, Liang G J, Huang W X, et al. Research on separating iron and scandium of scandium-contained red mud using sodium chloride segregation roasting—low intensity magnetic separation—hydrochloric acid leaching. Adv Eng Sci, 2019, 51(4): 199

    肖軍輝, 梁冠杰, 黃雯孝, 等. 含鈧赤泥氯化鈉離析焙燒—弱磁選—鹽酸浸出分離鐵、鈧試驗研究. 工程科學與技術, 2019, 51(4):199
    [6] Singh S, Aswath M U, Ranganath R V. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr Build Mater, 2018, 177: 91 doi: 10.1016/j.conbuildmat.2018.05.096
    [7] Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
    [8] Hoang M D, Do Q M, Le V Q. Effect of curing regime on properties of red mud-based alkali activated materials. Constr Build Mater, 2020, 259: 119779 doi: 10.1016/j.conbuildmat.2020.119779
    [9] Li S C, Zhang J, Li Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers. Constr Build Mater, 2021, 267: 120910 doi: 10.1016/j.conbuildmat.2020.120910
    [10] ?elik S. An experimental investigation of utilizing waste Red Mud in soil grouting. KSCE J Civil Eng, 2017, 21(4): 1191 doi: 10.1007/s12205-016-0774-0
    [11] Zhang J, Li S C, Li Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural network. J Clean Prod, 2020, 273: 122972 doi: 10.1016/j.jclepro.2020.122972
    [12] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457

    劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
    [13] Shen C, Wan X M, Zhang S L, et al. Research progress on design and mechanical properties of engineered geopolymer concrete. Concrete, 2020(7): 33 doi: 10.3969/j.issn.1002-3550.2020.07.008

    申晨, 萬小梅, 張素磊, 等. 工程地聚物混凝土設計及力學性能研究進展. 混凝土, 2020(7):33 doi: 10.3969/j.issn.1002-3550.2020.07.008
    [14] Lin C J, Dai W J, Li Z F, et al. Performance and microstructure of alkali-activated red mud-based grouting materials under class F fly ash amendment. Indian Geotech J, 2020, 50(6): 1048 doi: 10.1007/s40098-020-00438-y
    [15] Gupta A. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater Today Proc, 2020, https://doi.org/10.1016/j.matpr.2020.06.010
    [16] Song W L, Zhu Z D, Peng Y Y, et al. Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition. Constr Build Mater, 2019, 229: 116933 doi: 10.1016/j.conbuildmat.2019.116933
    [17] Xiang J C, Liu L P, Cui X M, et al. Effect of limestone on rheological, shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials. Constr Build Mater, 2018, 191: 1285 doi: 10.1016/j.conbuildmat.2018.09.209
    [18] Sun J W, Chen Z H. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol, 2018, 338: 725 doi: 10.1016/j.powtec.2018.07.041
    [19] Wang D H, Shi C J, Farzadnia N, et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater, 2018, 181: 659 doi: 10.1016/j.conbuildmat.2018.06.075
    [20] Shi C J, Wang D H, Jia H F, et al. Role of limestone powder and its effect on durability of cement-based materials. J Chin Ceram Soc, 2017, 45(11): 1582

    史才軍, 王德輝, 賈煌飛, 等. 石灰石粉在水泥基材料中的作用及對其耐久性的影響. 硅酸鹽學報, 2017, 45(11):1582
    [21] Bayiha B N, Billong N, Yamb E, et al. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater, 2019, 217: 28 doi: 10.1016/j.conbuildmat.2019.05.058
    [22] Aboulayt A, Riahi M, Ouazzani Touhami M, et al. Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol, 2017, 28(9): 2393 doi: 10.1016/j.apt.2017.06.022
    [23] Mu S, Liu J P, Lin W, et al. Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr Build Mater, 2017, 148: 846 doi: 10.1016/j.conbuildmat.2017.05.070
    [24] Du Y, Pei X J, Huang R Q, et al. Study on flow characteristics and application of viscosity time-varying grouting material. Rock Soil Mech, 2017, 38(12): 3498

    杜野, 裴向軍, 黃潤秋, 等. 黏度時變性注漿材料流動特性與應用研究. 巖土力學, 2017, 38(12):3498
    [25] Puertas F, Varga C, Alonso M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem Concr Compos, 2014, 53: 279 doi: 10.1016/j.cemconcomp.2014.07.012
    [26] Zhang J, Li S C, Li Z F, et al. Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. J Mater Cycles Waste Manage, 2020, 22(5): 1328 doi: 10.1007/s10163-020-01023-4
    [27] Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr Build Mater, 2014, 66: 410 doi: 10.1016/j.conbuildmat.2014.05.060
    [28] Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114

    周輝, 孟凡震, 張傳慶, 等. 基于應力-應變曲線的巖石脆性特征定量評價方法. 巖石力學與工程學報, 2014, 33(6):1114
    [29] Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31

    王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31
    [30] Zhang Z H, Li L F, Ma X, et al. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr Build Mater, 2016, 113: 237 doi: 10.1016/j.conbuildmat.2016.03.043
    [31] Rode S, Oyabu N, Kobayashi K, et al. True atomic-resolution imaging of ( $ 10\overline {14} $) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir, 2009, 25(5): 2850 doi: 10.1021/la803448v
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數:  762
  • HTML全文瀏覽量:  363
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-01
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回