-
摘要: 為明確石粉摻合料對地聚物材料的作用機理,以赤泥基注漿材料為研究對象,系統研究了石粉摻量和粒徑分布對赤泥基注漿材料漿體性能、力學性能和微觀結構的作用規律,并結合X射線衍射儀(XRD)、壓汞儀(MIP)和掃描電鏡(SEM)等微觀測試手段分析其作用機理。研究表明,結石體力學強度隨石粉摻量的上升先增大后減小,當石粉的質量分數為5%時抗壓強度最高,3 d時可達5.65 MPa,抗壓強度提升幅度為18.94%,同時漿液泌水率上升幅度僅為9.85%,且28 d結石體孔隙率降低了18.35%,因此,5%為石粉在赤泥基注漿材料中的最佳質量分數。在石粉最佳質量分數條件下,隨著石粉平均粒徑減小,漿液凝結時間及泌水率均呈現下降的趨勢;當石粉平均粒徑達到8 μm時,石粉“填充效應”和“成核效應”作用尤為明顯,漿液黏度突升,且3 d和28 d試樣強度分別提升了11.86%和10%,故石粉平均粒徑越小,其對赤泥基注漿材料的提升作用越顯著,赤泥基注漿材料的最佳粉料質量配比為赤泥47.5%,礦粉47.5%,石粉5%;微觀分析證實,石粉在漿液水化歷程中以物理特性參與其中,為Na2O–SiO2–Al2O3–H2O凝膠(N–A–S–H), 水化硅鋁酸鈣凝膠(C–A–S–H)和水化硅酸鈣凝膠(C–S–H)等凝膠提供成核位點,供地聚物凝膠沉淀和生長,加速漿液水化。Abstract: Considering the unstable performance of geopolymeric materials due to the large fluctuation of the raw-material composition and the high alkalinity of the system, this study investigated the effect of limestone powder on red mud–based geopolymeric grouting materials; moreover, the influence mechanism was analyzed via X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). Also, the study provided some reference to reduce the storage of red mud and realize the collaborative utilization of limestone powder and red mud–based grouting materials. The results show that the mechanical strength of specimens first increases and then decreases with the increase in the limestone powder content. The compressive strength of the specimen with 5% limestone content was the best: the 3-day compressive strength could reach 5.65 MPa, which was 18.94% higher than that of the specimen with 0% limestone powder content. Moreover, the slurry bleeding rate of the 5%-limestone specimen was only 9.85% higher than that of the 0%-limestone specimen, and the porosity of the former on day 28 was 18.35% lower than that of the latter. Therefore, 5% is the best content of limestone powder in red mud–based grouting material. When the mean particle size of limestone powder was 8 μm, the “filling effect” and “nucleation effect” of specimens were significant, and the slurry viscosity rose sharply; the compressive strengths of day-3 and day-28 samples increased by 11.86% and 10% than those of the corresponding bulk-limestone samples, respectively. Thus, the smaller the mean particle size of limestone powder, the more significant the improvement effect of red mud based grouting material. The optimum proportion of red mud–based grouting materials was 47.5% red mud, 47.5% blast furnace slag, and 5% limestone powder. The macro analysis confirms that limestone powder participates in the slurry hydration process, providing nucleation sites for N–A–S–H, C–A–S–H, and C–S–H gel, which can be used for geopolymer gel precipitation and growth and accelerate the slurry hydration.
-
Key words:
- red mud /
- limestone powder /
- geopolymer /
- grouting material /
- nucleation effect /
- filling effect
-
圖 9 石粉對赤泥基注漿材料孔徑分布和孔隙率的影響。(a)不同質量分數石粉的孔徑分布;(b)不同質量分數石粉的孔隙率;(c)不同平均粒徑石粉的孔徑分布;(d)不同平均粒徑石粉的孔隙率
Figure 9. Effect of limestone powder on pore-size distribution and porosity of red mud–based grouting material: (a) pore-size distribution of LS with different mass fractions; (b) porosity of LS with different mass fractions; (c) pore-size distribution of LS with different mean particle sizes; (d) porosity of LS with different mean particle sizes
表 1 原料化學組成
Table 1. Chemical composition of raw materials
% Raw materials SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O LOI RM 26.40 11.32 32.11 1.57 0.17 0.23 7.70 6.14 BFS 20.50 12.10 0.55 57.20 5.05 0.83 0.36 1.23 LS 0.53 0.02 0.01 55.28 0.55 0.01 — 43.6 表 2 實驗固體粉料質量配比
Table 2. Experimental proportion
% Sample RM BFS LS LS–0 50 50 0 LS–5% 47.5 47.5 5 LS–10% 45 45 10 LS–15% 42.5 42.5 15 LS–20% 40 40 20 LS–bulk 47.5 47.5 5 LS–60 47.5 47.5 5 LS–33 47.5 47.5 5 LS–21 47.5 47.5 5 LS–8 47.5 47.5 5 表 3 Herschel–Bulkley模型擬合結果
Table 3. Fitting results of Herschel–Bulkley model
Sample Fitting equation R2 LS–0 ${\tau = 0.449 + 0.2431{\gamma ^{1.170}}}$ 0.9932 LS–5% ${\tau = 0.473 + 0.2478{\gamma ^{1.161}}}$ 0.9936 LS–10% ${\tau = 0.432 + 0.2373{\gamma ^{1.164}}}$ 0.9944 LS–15% ${\tau = 0.419 + 0.2249{\gamma ^{1.172}}}$ 0.9944 LS–20% ${\tau = 0.385 + 0.2021{\gamma ^{1.192}}}$ 0.9950 LS–bulk ${\tau = 0.473 + 0.2478{\gamma ^{1.161}}}$ 0.9936 LS–60 ${\tau = 0.328 + 0.2051{\gamma ^{1.177}}}$ 0.9960 LS–33 ${\tau = 0.331 + 0.1817{\gamma ^{1.211}}}$ 0.9961 LS–21 ${\tau = 0.338 + 0.1938{\gamma ^{1.194}}}$ 0.9959 LS–8 ${\tau = 0.413 + 0.2062{\gamma ^{1.191}}}$ 0.9944 www.77susu.com -
參考文獻
[1] Tan J W, Cai J M, Huang L C, et al. Feasibility of using microwave curing to enhance the compressive strength of mixed recycled aggregate powder based geopolymer. Constr Build Mater, 2020, 262: 120897 doi: 10.1016/j.conbuildmat.2020.120897 [2] Duxson P, Fernández-Jiménez A, Provis J L, et al. Geopolymer technology: the current state of the art. J Mater Sci, 2006, 42(9): 2917 [3] Davidovits J, Huaman L, Davidovits R. Ancient geopolymer in south-American monument. SEM and petrographic evidence. Mater Lett, 2019, 235: 120 doi: 10.1016/j.matlet.2018.10.033 [4] Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud--coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438劉曉明, 唐彬文, 尹海峰, 等. 赤泥—煤矸石基公路路面基層材料的耐久與環境性能. 工程科學學報, 2018, 40(4):438 [5] Xiao J H, Liang G J, Huang W X, et al. Research on separating iron and scandium of scandium-contained red mud using sodium chloride segregation roasting—low intensity magnetic separation—hydrochloric acid leaching. Adv Eng Sci, 2019, 51(4): 199肖軍輝, 梁冠杰, 黃雯孝, 等. 含鈧赤泥氯化鈉離析焙燒—弱磁選—鹽酸浸出分離鐵、鈧試驗研究. 工程科學與技術, 2019, 51(4):199 [6] Singh S, Aswath M U, Ranganath R V. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr Build Mater, 2018, 177: 91 doi: 10.1016/j.conbuildmat.2018.05.096 [7] Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759 [8] Hoang M D, Do Q M, Le V Q. Effect of curing regime on properties of red mud-based alkali activated materials. Constr Build Mater, 2020, 259: 119779 doi: 10.1016/j.conbuildmat.2020.119779 [9] Li S C, Zhang J, Li Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: Effect of superplasticizers. Constr Build Mater, 2021, 267: 120910 doi: 10.1016/j.conbuildmat.2020.120910 [10] ?elik S. An experimental investigation of utilizing waste Red Mud in soil grouting. KSCE J Civil Eng, 2017, 21(4): 1191 doi: 10.1007/s12205-016-0774-0 [11] Zhang J, Li S C, Li Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural network. J Clean Prod, 2020, 273: 122972 doi: 10.1016/j.jclepro.2020.122972 [12] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457 [13] Shen C, Wan X M, Zhang S L, et al. Research progress on design and mechanical properties of engineered geopolymer concrete. Concrete, 2020(7): 33 doi: 10.3969/j.issn.1002-3550.2020.07.008申晨, 萬小梅, 張素磊, 等. 工程地聚物混凝土設計及力學性能研究進展. 混凝土, 2020(7):33 doi: 10.3969/j.issn.1002-3550.2020.07.008 [14] Lin C J, Dai W J, Li Z F, et al. Performance and microstructure of alkali-activated red mud-based grouting materials under class F fly ash amendment. Indian Geotech J, 2020, 50(6): 1048 doi: 10.1007/s40098-020-00438-y [15] Gupta A. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater Today Proc, 2020, https://doi.org/10.1016/j.matpr.2020.06.010 [16] Song W L, Zhu Z D, Peng Y Y, et al. Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition. Constr Build Mater, 2019, 229: 116933 doi: 10.1016/j.conbuildmat.2019.116933 [17] Xiang J C, Liu L P, Cui X M, et al. Effect of limestone on rheological, shrinkage and mechanical properties of alkali – Activated slag/fly ash grouting materials. Constr Build Mater, 2018, 191: 1285 doi: 10.1016/j.conbuildmat.2018.09.209 [18] Sun J W, Chen Z H. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol, 2018, 338: 725 doi: 10.1016/j.powtec.2018.07.041 [19] Wang D H, Shi C J, Farzadnia N, et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr Build Mater, 2018, 181: 659 doi: 10.1016/j.conbuildmat.2018.06.075 [20] Shi C J, Wang D H, Jia H F, et al. Role of limestone powder and its effect on durability of cement-based materials. J Chin Ceram Soc, 2017, 45(11): 1582史才軍, 王德輝, 賈煌飛, 等. 石灰石粉在水泥基材料中的作用及對其耐久性的影響. 硅酸鹽學報, 2017, 45(11):1582 [21] Bayiha B N, Billong N, Yamb E, et al. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr Build Mater, 2019, 217: 28 doi: 10.1016/j.conbuildmat.2019.05.058 [22] Aboulayt A, Riahi M, Ouazzani Touhami M, et al. Properties of metakaolin based geopolymer incorporating calcium carbonate. Adv Powder Technol, 2017, 28(9): 2393 doi: 10.1016/j.apt.2017.06.022 [23] Mu S, Liu J P, Lin W, et al. Property and microstructure of aluminosilicate inorganic coating for concrete: Role of water to solid ratio. Constr Build Mater, 2017, 148: 846 doi: 10.1016/j.conbuildmat.2017.05.070 [24] Du Y, Pei X J, Huang R Q, et al. Study on flow characteristics and application of viscosity time-varying grouting material. Rock Soil Mech, 2017, 38(12): 3498杜野, 裴向軍, 黃潤秋, 等. 黏度時變性注漿材料流動特性與應用研究. 巖土力學, 2017, 38(12):3498 [25] Puertas F, Varga C, Alonso M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cem Concr Compos, 2014, 53: 279 doi: 10.1016/j.cemconcomp.2014.07.012 [26] Zhang J, Li S C, Li Z F, et al. Feasibility study of red mud for geopolymer preparation: effect of particle size fraction. J Mater Cycles Waste Manage, 2020, 22(5): 1328 doi: 10.1007/s10163-020-01023-4 [27] Thongsanitgarn P, Wongkeo W, Chaipanich A, et al. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Constr Build Mater, 2014, 66: 410 doi: 10.1016/j.conbuildmat.2014.05.060 [28] Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin J Rock Mech Eng, 2014, 33(6): 1114周輝, 孟凡震, 張傳慶, 等. 基于應力-應變曲線的巖石脆性特征定量評價方法. 巖石力學與工程學報, 2014, 33(6):1114 [29] Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31 [30] Zhang Z H, Li L F, Ma X, et al. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement. Constr Build Mater, 2016, 113: 237 doi: 10.1016/j.conbuildmat.2016.03.043 [31] Rode S, Oyabu N, Kobayashi K, et al. True atomic-resolution imaging of ( $ 10\overline {14} $ ) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir, 2009, 25(5): 2850 doi: 10.1021/la803448v -