<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超混沌電流對金屬錳電解陽極電位振蕩的調控

謝子楠 劉作華 李春彪 張鑫 顧加成 李強 陶長元

謝子楠, 劉作華, 李春彪, 張鑫, 顧加成, 李強, 陶長元. 超混沌電流對金屬錳電解陽極電位振蕩的調控[J]. 工程科學學報, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
引用本文: 謝子楠, 劉作華, 李春彪, 張鑫, 顧加成, 李強, 陶長元. 超混沌電流對金屬錳電解陽極電位振蕩的調控[J]. 工程科學學報, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
Citation: XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002

超混沌電流對金屬錳電解陽極電位振蕩的調控

doi: 10.13374/j.issn2095-9389.2020.12.01.002
基金項目: 國家自然科學基金資助項目(51974045)
詳細信息
    通訊作者:

    E-mail:liuzuohua@cqu.edu.cn

  • 中圖分類號: TF792;TQ151

Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current

More Information
  • 摘要: 金屬錳濕法電冶過程是一個典型的遠離平衡態的非線性體系,直流作用下會出現電化學振蕩、金屬分形等非線性行為而引發體系額外的能耗。本文提出一種超混沌電流電解的新模式,通過引入超混沌電路代替原有直流電源來實現。超混沌電流作用下,采用恒電流極化曲線、陽極極化曲線、塔菲爾測試等分析方法和X射線衍射分析、掃描電子顯微鏡的表征方法,研究鉛合金陽極電化學振蕩行為與陽極沉積的錳氧化物之間的關聯。研究結果表明,在電流密度為350 A·m?2恒電流極化30 min后,超混沌電流極化作用下電位振蕩的平均振蕩周期較直流極化提高5.6 s,平均振幅降低 38 mV;超混沌電流作用下陽極生成的MnO2,其表面較為致密平整,在一定程度上可以提高鉛合金陽極析氧反應活性和耐腐蝕性。綜合分析可知,將超混沌電流運用于金屬錳電解過程,可以實現對陽極電化學振蕩的有效調控,為進一步降低電解過程能耗和污染排放提供新思路。

     

  • 圖  1  系統(1)的混沌吸引子(當 a = 4.5, b =5.5, c =5, d = 4, e = 0.4, m = 1, k = 0.2, 初始值為(1, 0, 1, 0))。(a)x?y;(b)x?z;(c)y?z;(d)x?u

    Figure  1.  Chaotic attractor of system (1) (a = 4.5, b = 5.5, c = 5, d = 4, e = 0.4, m = 1, k = 0.2, the initial value is (1, 0, 1, 0)): (a) x?y; (b) x?z; (c) y?z; (d) x?u

    圖  2  憶阻系統(1)的電路結構圖

    Figure  2.  Circuit structure diagram of memristive system (1)

    圖  3  鉛合金陽極的恒電流極化曲線(直流),(b,c)為(a)的局部放大圖

    Figure  3.  Galvanostatic polarization of lead alloy anode (direct current), (b,c) is a local enlargement of (a)

    圖  4  鉛合金陽極的恒電流極化曲線(超混沌電流),(b,c)為(a)的局部放大圖

    Figure  4.  Galvanostatic polarization of lead alloy anode (hyperchaotic current), (b,c) is a local enlargement of (a)

    圖  5  鉛合金陽極電勢振蕩周期的變化情況

    Figure  5.  Periodic variation of the potential oscillation of lead alloy anode

    圖  6  鉛合金陽極電勢振蕩振幅的變化情況

    Figure  6.  Amplitude variation of the potential oscillation of lead alloy anode

    圖  7  不同恒電流極化時間下鉛合金電極的陽極極化曲線

    Figure  7.  Anodic polarization curves of lead alloy electrodes under different galvanostatic polarization times

    圖  8  不同恒電流極化時間下鉛合金電極的塔菲爾曲線

    Figure  8.  Tafel plots of lead alloy electrodes under different galvanostatic polarization times

    圖  9  陽極沉積MnO2的X射線衍射圖

    Figure  9.  XRD patterns of anodic deposited MnO2

    圖  10  陽極沉積MnO2的掃描電鏡圖。(a)直流;(b)超混沌電流

    Figure  10.  SEM images of anodic deposited MnO2: (a) direct current; (b) hyperchaotic current

    表  1  不同恒電流極化下鉛合金電極的耐蝕情況

    Table  1.   Corrosion parameters of lead alloy electrodes under different galvanostatic polarization

    Polarization conditionsjcorr/(10?4A·cm?2)Ecorr/V
    0 min0.6440.476
    DC, 30 min1.8140.476
    DC, 60 min1.9080.578
    HCC, 30 min1.3180.505
    HCC, 60 min1.6980.593
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tan Z Z, Zhang L Y. A research progress in electrolytic manganese metal industry of China. Chinas Manganese Ind, 2019, 37(2): 1

    譚柱中, 張麗云. 中國電解金屬錳工業研究進展. 中國錳業, 2019, 37(2):1
    [2] Lü D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high-value regeneration of acid medium. Chin J Eng, 2020, 42(5): 578

    呂東亞, 馬保中, 陳永強, 等. 鹽酸法富集低品位錳礦及酸介質高值再生工藝. 工程科學學報, 2020, 42(5):578
    [3] Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. Chin J Eng, 2018, 40(7): 800

    張小軍, 黃惠, 董勁, 等. 鋅電積過程中錳元素對鋁陰極的電化學行為影響. 工程科學學報, 2018, 40(7):800
    [4] Zhang R R, Ma X T, Shen X X, et al. Life cycle assessment of electrolytic manganese metal production. J Clean Prod, 2020, 253: 119951 doi: 10.1016/j.jclepro.2019.119951
    [5] Fernández-Barcia M, Hoffmann V, Oswald S, et al. Electrodeposition of manganese layers from sustainable sulfate based electrolytes. Surf Coat Technol, 2018, 334: 261 doi: 10.1016/j.surfcoat.2017.11.028
    [6] Niu Y C, Na C G, Wu S K. Evaluation and analysis of mineral resource security capability —a case study of manganese ore. Nat Resour Econ China, 2021, 34(4): 78

    牛穎超, 那春光, 吳尚昆. 礦產資源保障能力評價與分析——以錳礦為例. 中國國土資源經濟, 2021, 34(4):78
    [7] Yang F, Jiang L X, Yu X Y, et al. Catalytic effects of $ {\rm{N}}_4^+ $ on hydrogen evolution and manganese electrodeposition on stainless steel. Trans Nonferrous Met Soc China, 2019, 29(11): 2430 doi: 10.1016/S1003-6326(19)65149-6
    [8] Tao C Y, Liu Z H, Fan X. The Theory and Engineering Application of Electrolytic Manganese Energy Saving and Emission Reduction. Chongqing: Chongqing University Press, 2018

    陶長元, 劉作華, 范興. 電解錳節能減排理論與工程應用. 重慶: 重慶大學出版社, 2018
    [9] Forghani M, McCarthy J, Donne S W. Oscillatory current behavior in energy storage electrode materials. J Electrochem Soc, 2019, 166(15): A3620 doi: 10.1149/2.0701915jes
    [10] Yang Y X, Zhou H, Zhang Q, et al. Template-free electrodeposition of dendritic metal blades for efficient flexible manganese oxide electrode. J Electrochem Soc, 2019, 166(15): A3559 doi: 10.1149/2.0181915jes
    [11] Fan X, Hou J, Sun D G, et al. Mn-oxides catalyzed periodic current oscillation on the anode. Electrochimica Acta, 2013, 102: 466 doi: 10.1016/j.electacta.2013.03.175
    [12] Fan X, Yang D, Ding L, et al. Periodic current oscillation catalyzed by δ-MnO2 nanosheets. Chemphyschem, 2015, 16(1): 176 doi: 10.1002/cphc.201402623
    [13] Bai H, Qing S L, Yang D P, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current. J Electrochem Soc, 2017, 164(4): E78 doi: 10.1149/2.1241704jes
    [14] Xie Z N, Liu Z H, Zhang X J, et al. Electrochemical oscillation on anode regulated by sodium oleate in electrolytic metal manganese. J Electroanal Chem, 2019, 845: 13 doi: 10.1016/j.jelechem.2019.05.012
    [15] Zhou H, Zhang N N, Bai H, et al. A pulse modulatable self-oscillation kinetics for water oxidation at large current on manganese catalyst. Electrochimica Acta, 2020, 337: 135798 doi: 10.1016/j.electacta.2020.135798
    [16] Xie Z N, Liu Z H, Chang J, et al. Electrochemical behaviors of MnO2 on lead alloy anode during pulse electrodeposition for efficient manganese electrowinning. ACS Sustain Chem Eng, 2020, 8(39): 15044 doi: 10.1021/acssuschemeng.0c06259
    [17] Bao B C, Bao H, Wang N, et al. Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals, 2017, 94: 102 doi: 10.1016/j.chaos.2016.11.016
    [18] Kumar S, Strachan J P, Stanley Williams R. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017, 548(7667): 318 doi: 10.1038/nature23307
    [19] Jiang X, Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358(6361): 344 doi: 10.1126/science.aao0763
    [20] Chai X L, Fu X L, Gan Z H, et al. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process, 2019, 155: 44 doi: 10.1016/j.sigpro.2018.09.029
    [21] Bao B C, Jiang T, Wang G Y, et al. Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn, 2017, 89(2): 1157 doi: 10.1007/s11071-017-3507-0
    [22] Hu X K, Zhou P. Circuit realization of a 3D multistability chaotic system and its synchronization via linear resistor and linear capacitor in parallel coupling. Complexity, 2020, 2020: 9846934
    [23] Li C B, Sprott J C. An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A, 2018, 382(8): 581 doi: 10.1016/j.physleta.2017.12.022
    [24] Li C B, Sun J Y, Lu T, et al. Polarity balance for attractor self-reproducing. Chaos, 2020, 30(6): 063144 doi: 10.1063/5.0007668
    [25] Jaimes R, Miranda-Hernández M, Lartundo-Rojas L, et al. Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II). Hydrometallurgy, 2015, 156: 53 doi: 10.1016/j.hydromet.2015.05.008
    [26] Zhang C M, Duan N, Jiang L H, et al. The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte. J Electroanal Chem, 2018, 811: 53 doi: 10.1016/j.jelechem.2018.01.040
    [27] Schmachtel S, Murtom?ki L, Aromaa J, et al. Simulation of electrochemical processes during oxygen evolution on Pb-MnO2 composite electrodes. Electrochimica Acta, 2017, 245: 512 doi: 10.1016/j.electacta.2017.04.131
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  400
  • HTML全文瀏覽量:  239
  • PDF下載量:  31
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-01
  • 網絡出版日期:  2021-07-22
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回