Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current
-
摘要: 金屬錳濕法電冶過程是一個典型的遠離平衡態的非線性體系,直流作用下會出現電化學振蕩、金屬分形等非線性行為而引發體系額外的能耗。本文提出一種超混沌電流電解的新模式,通過引入超混沌電路代替原有直流電源來實現。超混沌電流作用下,采用恒電流極化曲線、陽極極化曲線、塔菲爾測試等分析方法和X射線衍射分析、掃描電子顯微鏡的表征方法,研究鉛合金陽極電化學振蕩行為與陽極沉積的錳氧化物之間的關聯。研究結果表明,在電流密度為350 A·m?2恒電流極化30 min后,超混沌電流極化作用下電位振蕩的平均振蕩周期較直流極化提高5.6 s,平均振幅降低 38 mV;超混沌電流作用下陽極生成的MnO2,其表面較為致密平整,在一定程度上可以提高鉛合金陽極析氧反應活性和耐腐蝕性。綜合分析可知,將超混沌電流運用于金屬錳電解過程,可以實現對陽極電化學振蕩的有效調控,為進一步降低電解過程能耗和污染排放提供新思路。Abstract: Manganese metal electrolysis is a typical nonlinear system far from the equilibrium state. In this case, nonlinear behaviors such as electrochemical oscillation and metal fractal occur in the electrode reaction process. The multiple valence state changes of manganese and the nonlinear coupling of multiple chemical reactions cause the electrolytic process to be unstable and unmanageable, and increase extra energy consumption. Therefore, a study regarding the physical and chemical processes of the electrode/solution interface will help in revealing the electrode reaction mechanism and elaborate the nonlinear behaviors of the interface reaction process. This should control the electrode reaction process more effectively and regulate the entire process more efficiently. This paper presents a new mode of chaotic current electrolysis by introducing a hyperchaotic circuit instead of the original direct current power supply. Galvanostatic polarization, anode polarization, the Tafel test, X-ray diffraction, and scanning electron microscopy were employed to analyze the relationship between the electrochemical oscillation behavior and anodic deposited manganese oxides on lead alloy anodes. Research results show that the potential oscillation behavior of the anode is suppressed to a certain extent. The average oscillation period was increased by 5.6 s, and the average oscillation amplitude was reduced by 38 mV compared with direct current polarization after 350 A·m?2 constant current polarization for 30 min. This would help to reduce the generation of anode slime and additional energy consumption during electrolysis. At the same time, the deposited MnO2 on the anode under hyperchaotic current had a dense and flat surface, which improved the oxygen evolution reaction activity and the corrosion resistance of the lead alloy anode. The comprehensive analysis demonstrated that the application of hyperchaotic current to manganese metal electrolysis could achieve effective regulation of anode electrochemical oscillation, providing a new insight for the further reduction in the energy consumption and pollution emission in the electrolysis process.
-
表 1 不同恒電流極化下鉛合金電極的耐蝕情況
Table 1. Corrosion parameters of lead alloy electrodes under different galvanostatic polarization
Polarization conditions jcorr/(10?4A·cm?2) Ecorr/V 0 min 0.644 0.476 DC, 30 min 1.814 0.476 DC, 60 min 1.908 0.578 HCC, 30 min 1.318 0.505 HCC, 60 min 1.698 0.593 www.77susu.com -
參考文獻
[1] Tan Z Z, Zhang L Y. A research progress in electrolytic manganese metal industry of China. China’s Manganese Ind, 2019, 37(2): 1譚柱中, 張麗云. 中國電解金屬錳工業研究進展. 中國錳業, 2019, 37(2):1 [2] Lü D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high-value regeneration of acid medium. Chin J Eng, 2020, 42(5): 578呂東亞, 馬保中, 陳永強, 等. 鹽酸法富集低品位錳礦及酸介質高值再生工藝. 工程科學學報, 2020, 42(5):578 [3] Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. Chin J Eng, 2018, 40(7): 800張小軍, 黃惠, 董勁, 等. 鋅電積過程中錳元素對鋁陰極的電化學行為影響. 工程科學學報, 2018, 40(7):800 [4] Zhang R R, Ma X T, Shen X X, et al. Life cycle assessment of electrolytic manganese metal production. J Clean Prod, 2020, 253: 119951 doi: 10.1016/j.jclepro.2019.119951 [5] Fernández-Barcia M, Hoffmann V, Oswald S, et al. Electrodeposition of manganese layers from sustainable sulfate based electrolytes. Surf Coat Technol, 2018, 334: 261 doi: 10.1016/j.surfcoat.2017.11.028 [6] Niu Y C, Na C G, Wu S K. Evaluation and analysis of mineral resource security capability —a case study of manganese ore. Nat Resour Econ China, 2021, 34(4): 78牛穎超, 那春光, 吳尚昆. 礦產資源保障能力評價與分析——以錳礦為例. 中國國土資源經濟, 2021, 34(4):78 [7] Yang F, Jiang L X, Yu X Y, et al. Catalytic effects of $ {\rm{N}}_4^+ $ on hydrogen evolution and manganese electrodeposition on stainless steel. Trans Nonferrous Met Soc China, 2019, 29(11): 2430 doi: 10.1016/S1003-6326(19)65149-6[8] Tao C Y, Liu Z H, Fan X. The Theory and Engineering Application of Electrolytic Manganese Energy Saving and Emission Reduction. Chongqing: Chongqing University Press, 2018陶長元, 劉作華, 范興. 電解錳節能減排理論與工程應用. 重慶: 重慶大學出版社, 2018 [9] Forghani M, McCarthy J, Donne S W. Oscillatory current behavior in energy storage electrode materials. J Electrochem Soc, 2019, 166(15): A3620 doi: 10.1149/2.0701915jes [10] Yang Y X, Zhou H, Zhang Q, et al. Template-free electrodeposition of dendritic metal blades for efficient flexible manganese oxide electrode. J Electrochem Soc, 2019, 166(15): A3559 doi: 10.1149/2.0181915jes [11] Fan X, Hou J, Sun D G, et al. Mn-oxides catalyzed periodic current oscillation on the anode. Electrochimica Acta, 2013, 102: 466 doi: 10.1016/j.electacta.2013.03.175 [12] Fan X, Yang D, Ding L, et al. Periodic current oscillation catalyzed by δ-MnO2 nanosheets. Chemphyschem, 2015, 16(1): 176 doi: 10.1002/cphc.201402623 [13] Bai H, Qing S L, Yang D P, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current. J Electrochem Soc, 2017, 164(4): E78 doi: 10.1149/2.1241704jes [14] Xie Z N, Liu Z H, Zhang X J, et al. Electrochemical oscillation on anode regulated by sodium oleate in electrolytic metal manganese. J Electroanal Chem, 2019, 845: 13 doi: 10.1016/j.jelechem.2019.05.012 [15] Zhou H, Zhang N N, Bai H, et al. A pulse modulatable self-oscillation kinetics for water oxidation at large current on manganese catalyst. Electrochimica Acta, 2020, 337: 135798 doi: 10.1016/j.electacta.2020.135798 [16] Xie Z N, Liu Z H, Chang J, et al. Electrochemical behaviors of MnO2 on lead alloy anode during pulse electrodeposition for efficient manganese electrowinning. ACS Sustain Chem Eng, 2020, 8(39): 15044 doi: 10.1021/acssuschemeng.0c06259 [17] Bao B C, Bao H, Wang N, et al. Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals, 2017, 94: 102 doi: 10.1016/j.chaos.2016.11.016 [18] Kumar S, Strachan J P, Stanley Williams R. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017, 548(7667): 318 doi: 10.1038/nature23307 [19] Jiang X, Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358(6361): 344 doi: 10.1126/science.aao0763 [20] Chai X L, Fu X L, Gan Z H, et al. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process, 2019, 155: 44 doi: 10.1016/j.sigpro.2018.09.029 [21] Bao B C, Jiang T, Wang G Y, et al. Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn, 2017, 89(2): 1157 doi: 10.1007/s11071-017-3507-0 [22] Hu X K, Zhou P. Circuit realization of a 3D multistability chaotic system and its synchronization via linear resistor and linear capacitor in parallel coupling. Complexity, 2020, 2020: 9846934 [23] Li C B, Sprott J C. An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A, 2018, 382(8): 581 doi: 10.1016/j.physleta.2017.12.022 [24] Li C B, Sun J Y, Lu T, et al. Polarity balance for attractor self-reproducing. Chaos, 2020, 30(6): 063144 doi: 10.1063/5.0007668 [25] Jaimes R, Miranda-Hernández M, Lartundo-Rojas L, et al. Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II). Hydrometallurgy, 2015, 156: 53 doi: 10.1016/j.hydromet.2015.05.008 [26] Zhang C M, Duan N, Jiang L H, et al. The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte. J Electroanal Chem, 2018, 811: 53 doi: 10.1016/j.jelechem.2018.01.040 [27] Schmachtel S, Murtom?ki L, Aromaa J, et al. Simulation of electrochemical processes during oxygen evolution on Pb-MnO2 composite electrodes. Electrochimica Acta, 2017, 245: 512 doi: 10.1016/j.electacta.2017.04.131 -