-
摘要: 鋁電解槽炭渣是鋁工業冶煉生產過程中產生的一種危險廢物。炭渣的大量堆存,在浪費電解質資源的同時,也會造成大氣、土壤以及水體的污染。本試驗以炭渣為原料,Na2CO3為添加料,對炭渣的焙燒?水浸工藝回收炭粉和冰晶石的可行性與過程進行了研究。試驗結果表明,將質量比為2.5∶1的Na2CO3與炭渣混合后置于坩堝電阻爐中,在950 ℃下焙燒2 h,炭渣中氧化鋁、冰晶石和亞冰晶石被Na2CO3消耗,焙燒后混合料由C、Na2CO3、NaF、NaAlO2組成。焙燒后混合料在pH為13、浸出溫度為25 ℃的條件下浸出1 h,固液分離后的浸出渣經過水洗、烘干后得到炭粉,其純度可達89%。利用碳酸化法回收浸出液中F?,可獲得主成分合格的粉狀冰晶石。適當地提高焙燒溫度和延長保溫時間可提高炭和電解質的分離效率。研究經濟而有效的炭渣處理方法,不僅可以解決炭渣帶來的環境污染問題,還對社會的可持續發展產生深遠影響。Abstract: Carbon residue in aluminum electrolytic cell is a kind of hazardous waste produced during the smelting and production process of the aluminum industry. Approximately 10 kg of carbon residue is produced for every ton of primary aluminum produced. China’s primary aluminum output was as high as 35.04 million tons in 2019, so its carbon residue production was about 350,000 tons. The accumulation of a large amount of carbon residue wastes electrolyte resources, as well as causes air, soil, and water pollution. Additionally, carbon residue was listed on the National Hazardous Waste List in 2016. Therefore, the treatment of carbon residue needs to be solved urgently. In this experiment, the characteristics of carbon residue were introduced, and it was used as the raw material to study the process feasibility of recovering carbon powder and cryolite by the roasting-water leaching process of carbon residue with Na2CO3 as the additive. Na2CO3 with a mass ratio of 2.5∶1 was mixed with carbon residue, placed in a crucible-resistance furnace, and then baked at 950 ℃ for 2 h. Test results show that the alumina, cryolite, and sub-cryolite in the carbon residue are consumed by Na2CO3, and the mixture after roasting consists of C, Na2CO3, NaF, and NaAlO2. After roasting, the mixture is leached for 1 hour with a pH of 14 and at a leaching temperature of 25 ℃. The purity of the recovered carbon powder after solid-liquid separation can reach 89%. The carbonation method is used to recover F? in the leachate to obtain powdered cryolite with qualified main components. Properly increasing the roasting temperature and extending the holding time can improve the separation efficiency of carbon and electrolyte. Research on economical and effective carbon residue treatment methods can not only solve the environmental pollution caused by carbon residue, but it can also have a profound impact on the sustainable development of society.
-
Key words:
- carbon residue /
- aluminum electrolysis /
- electrolyte /
- carbon powder /
- cryolite
-
表 1 炭渣主要成分(質量分數)
Table 1. Main components of carbon residue
% Sample
numberC Na Al F O K Li Mg Ca Total Sample 1 30.1 16.53 11.69 33.55 — 0.11 0.002 0.3 1.14 93.422 Sample 2 29.2 16.67 10.92 34.7 — 0.1 0.002 0.33 1.21 93.132 表 2 炭渣焙燒試驗參數及炭粉產物純度
Table 2. Roasting test parameters of carbon residue and purity of carbon powder
Test Components Roasting temperature/
℃Holding time/
hThe quality of carbon
powder/gPurity of carbon powder/
%Exp. Ⅰ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 800 1 5.51 55 Exp. Ⅱ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 850 1 5.28 56 Exp. Ⅲ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 900 0.5 3.99 70 Exp. Ⅳ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 900 1 3.69 72 Exp. Ⅴ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 900 1.5 3.71 73 Exp. Ⅵ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 900 2 3.52 76 Exp. Ⅶ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 950 1 3.48 84 Exp. Ⅷ m[carbon residue] = 10 g, m[Na2CO3] = 25 g 950 2 2.95 89 www.77susu.com -
參考文獻
[1] Grjothem K, Welch B J. Aluminium smelter technology. Dusseldorf: Aluminium-Verlag, 1980 [2] Xu H F, Fan L J, Zhang Y, et al. Analysis of sources of carbon residue and its control methods. Carbon Tech, 2009, 28(6): 41 doi: 10.3969/j.issn.1001-3741.2009.06.009許海飛, 樊利軍, 張陽, 等. 炭渣來源及其控制方法分析. 炭素技術, 2009, 28(6):41 doi: 10.3969/j.issn.1001-3741.2009.06.009 [3] Hume S M, Utley M R, Welch B J. The influence of low current densities on anode performance. Light Metals. 1992: 687 [4] Zhao D F, Yang Y Z. Analysis on the harmfulness of carbon slag in aluminum electrolysis production. Sci Technol Innov Her, 2013, 10(10): 154 doi: 10.3969/j.issn.1674-098X.2013.10.100趙東方, 楊玉卓. 探析鋁電解生產中碳渣的危害性. 科技創新導報, 2013, 10(10):154 doi: 10.3969/j.issn.1674-098X.2013.10.100 [5] Zhang B S. The harm of carbon slag in aluminum electrolysis production. Xinjiang Nonferrous Metals, 2013, 36(1): 70張保社. 碳渣在鋁電解生產中的危害. 新疆有色金屬, 2013, 36(1):70 [6] Li C Z. Causes of carbon slag formation in aluminum electrolysis production and its treatment methods. Qinghai Sci Technol, 2008, 15(4): 74 doi: 10.3969/j.issn.1005-9393.2008.04.032李長珍. 鋁電解生產中炭渣生成的原因及其處理方法. 青海科技, 2008, 15(4):74 doi: 10.3969/j.issn.1005-9393.2008.04.032 [7] Wen L G, Sun H L, Li J Y. Synthetic analysis of the recovery and utilization for carbon slag from aluminium electrolysis in Qingtongxia aluminum plant in Ningxia. Inn Mong Petrochem Ind, 2019, 45(6): 13 doi: 10.3969/j.issn.1006-7981.2019.06.005溫鋁剛, 孫海璐, 李京彥. 寧夏青銅峽鋁廠鋁電解炭渣回收利用綜合分析. 內蒙古石油化工, 2019, 45(6):13 doi: 10.3969/j.issn.1006-7981.2019.06.005 [8] Lu H M, Qiu Z X. Comprehensive utilization of carbonaceous slag from aluminium reduction cells. Multipurp Util Miner Resour, 1997(2): 45盧惠民, 邱竹賢. 鋁電解槽炭渣的綜合利用研究. 礦產綜合利用, 1997(2):45 [9] Liu Y Q, Ji F W. Hazard analysis and control of carbon slag in aluminum electrolysis production. World Nonferrous Met, 2013(12): 30劉永強, 姬鳳武. 鋁電解生產中炭渣的危害分析與控制. 世界有色金屬, 2013(12):30 [10] Huang Y K, Xiao H Z, Peng D Q. Formation and distribution of carbon slag in aluminum electrolyte melt and its separation measures. Light Met, 1994(10): 23黃英科, 肖輝照, 彭德泉. 鋁電解質熔液中碳渣的形成和分布及其分離措施. 輕金屬, 1994(10):23 [11] Jin R Y, Wang Y M. The cause of carbon residue increase in aluminum plant and its prevention. Shanghai Met (Nonferrous Fascicule) , 1992, 13(4): 54金瑞玉, 王玉明. 鋁廠碳渣增多的原因及其預防. 上海金屬(有色分冊), 1992, 13(4):54 [12] Xie Y M. Impact of carbon residue to the aluminum electrolysis production. Gansu Metall, 2014, 36(4): 32 doi: 10.3969/j.issn.1672-4461.2014.04.010謝葉明. 碳渣對鋁電解生產的影響. 甘肅冶金, 2014, 36(4):32 doi: 10.3969/j.issn.1672-4461.2014.04.010 [13] Peng J P, Liang C, Di Y Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaCl Molten Salt Extraction Method: China Patent, CN110938838A. 2020-3-31彭建平, 梁誠, 狄躍忠, 等. 利用NaCl熔鹽萃取法處理鋁電解槽陽極炭渣的方法: 中國專利, CN110938838A. 2020-3-31 [14] Peng J P, Liang C, Wei Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaOH Molten Salt Method: China Patent, CN110775955A. 2020-2-11彭建平, 梁誠, 魏征, 等. 一種利用NaOH熔鹽法處理鋁電解槽陽極炭渣的方法: 中國專利, CN110775955A. 2020-2-11 [15] Zhao R M, Yu Z L, Li S H. The recycling experimental study on aluminum electrolysis carbon residues. Yunnan Metall, 2015, 44(1): 15 doi: 10.3969/j.issn.1006-0308.2015.01.004趙瑞敏, 于站良, 李順華. 鋁電解炭渣回收利用實驗研究. 云南冶金, 2015, 44(1):15 doi: 10.3969/j.issn.1006-0308.2015.01.004 [16] Kang N. Flotation of aluminum electrolytic carbon slag. Light Met, 2002(6): 42 doi: 10.3969/j.issn.1002-1752.2002.06.012康寧. 鋁電解碳渣的浮選. 輕金屬, 2002(6):42 doi: 10.3969/j.issn.1002-1752.2002.06.012 [17] Xue W Q, Hou X. Recycling and utilizing technology on aluminium electrolytic carbon dross. World Nonferrous Met, 2002(8): 35薛伍芹, 侯新. 鋁電解炭渣回收利用技術. 世界有色金屬, 2002(8):35 [18] Mei X Y, Li J, Yu Z L. The research on recycling carbon residue by Floatation process. Light Met, 2016(4): 28梅向陽, 李俊, 于站良. 浮選法回收利用碳渣實驗研究. 輕金屬, 2016(4):28 [19] Chai D P, Hou G H, Huang H B. Experimental study on the treatment of aluminum reduction carbon residue by vacuum metallurgy. Light Met, 2016(4): 25柴登鵬, 候光輝, 黃海波. 真空冶金法處理鋁電解碳渣試驗研究. 輕金屬, 2016(4):25 [20] Feng N X, Wang Y W. Method for Separating and Recovering carbon and Electrolyte Components from Carbon-containing Solid Waste Material of Molten Aluminum Electrolysis: China Patent, CN104894600A. 2015-9-9馮乃祥, 王耀武. 一種從鋁熔鹽電解含炭固體廢料中分離回收炭和電解質組分的方法: 中國專利, CN104894600A. 2015-9-9 [21] Chen X P, Zhao L, Luo Z S. Study on recycling process for electrolyte in carbon dust from reduction cells. Light Met, 2009(12): 21陳喜平, 趙淋, 羅鐘生. 回收鋁電解炭渣中電解質的研究. 輕金屬, 2009(12):21 [22] Chen X P, Li W X, Wang Y. Method for Extracting Electrolyte from Carbon Slag of Aluminum Electrolysis Anode: China Patent, CN101063215A. 2007-10-31陳喜平, 李旺興, 王玉. 一種提取鋁電解陽極碳渣中電解質的方法: 中國專利, CN101063215A. 2007-10-31 [23] Li W X, Chen X P, Liu F Q, et al. Process for Recovering Fluoride Salt from Aluminium Electrolyzing Carbon Slag: China Patent, CN1587028A. 2005-3-2李旺興, 陳喜平, 劉鳳琴, 等. 一種回收鋁電解陽極碳渣中氟化鹽的方法: 中國專利, CN1587028A. 2005-3-2 [24] Li M J, Shi Z H, Zheng C F, et al. Investigation into direct synthesizing cryolite by sodium aluminate. Conserv Util Miner Resour, 2008(4): 36 doi: 10.3969/j.issn.1001-0076.2008.04.010李民菁, 史智慧, 鄭朝付, 等. 鋁酸鈉溶液直接合成冰晶石的研究. 礦產保護與利用, 2008(4):36 doi: 10.3969/j.issn.1001-0076.2008.04.010 -