<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

利用Na2CO3處理鋁電解槽炭渣的研究

梁誠 趙潤民 彭建平 狄躍忠 王耀武

梁誠, 趙潤民, 彭建平, 狄躍忠, 王耀武. 利用Na2CO3處理鋁電解槽炭渣的研究[J]. 工程科學學報, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
引用本文: 梁誠, 趙潤民, 彭建平, 狄躍忠, 王耀武. 利用Na2CO3處理鋁電解槽炭渣的研究[J]. 工程科學學報, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
LIANG Cheng, ZHAO Run-min, PENG Jian-ping, DI Yue-zhong, WANG Yao-wu. Treatment of carbon residue from aluminum electrolysis cell using Na2CO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
Citation: LIANG Cheng, ZHAO Run-min, PENG Jian-ping, DI Yue-zhong, WANG Yao-wu. Treatment of carbon residue from aluminum electrolysis cell using Na2CO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007

利用Na2CO3處理鋁電解槽炭渣的研究

doi: 10.13374/j.issn2095-9389.2020.11.30.007
基金項目: 國家自然科學基金資助項目(51774080,22078056);國家重點研發計劃資助項目(2018YFC1901905)
詳細信息
    通訊作者:

    E-mail: pengjp@mail.neu.edu.cn

  • 中圖分類號: TF09

Treatment of carbon residue from aluminum electrolysis cell using Na2CO3

More Information
  • 摘要: 鋁電解槽炭渣是鋁工業冶煉生產過程中產生的一種危險廢物。炭渣的大量堆存,在浪費電解質資源的同時,也會造成大氣、土壤以及水體的污染。本試驗以炭渣為原料,Na2CO3為添加料,對炭渣的焙燒?水浸工藝回收炭粉和冰晶石的可行性與過程進行了研究。試驗結果表明,將質量比為2.5∶1的Na2CO3與炭渣混合后置于坩堝電阻爐中,在950 ℃下焙燒2 h,炭渣中氧化鋁、冰晶石和亞冰晶石被Na2CO3消耗,焙燒后混合料由C、Na2CO3、NaF、NaAlO2組成。焙燒后混合料在pH為13、浸出溫度為25 ℃的條件下浸出1 h,固液分離后的浸出渣經過水洗、烘干后得到炭粉,其純度可達89%。利用碳酸化法回收浸出液中F?,可獲得主成分合格的粉狀冰晶石。適當地提高焙燒溫度和延長保溫時間可提高炭和電解質的分離效率。研究經濟而有效的炭渣處理方法,不僅可以解決炭渣帶來的環境污染問題,還對社會的可持續發展產生深遠影響。

     

  • 圖  1  樣品1的X射線衍射物相分析

    Figure  1.  X-ray diffraction phase analysis of sample 1

    圖  2  樣品1的SEM-EDS圖

    Figure  2.  SEM-EDS images of sample 1

    圖  3  炭渣焙燒?水浸試驗流程圖

    Figure  3.  Flow chart of carbon residue roasting?water immersion test

    圖  4  炭渣焙燒?水浸試驗原理圖

    Figure  4.  Principle diagram of carbon residue roasting?water immersion test

    圖  5  焙燒試驗主要反應熱力學計算曲線

    Figure  5.  Main reaction thermodynamic calculation curve of roasting test

    圖  6  焙燒混合料的X射線衍射物相分析

    Figure  6.  X-ray diffraction phase analysis of roasted mixture

    圖  7  炭渣(a)和焙燒混合料(b)的SEM-EDS圖

    Figure  7.  SEM-EDS mapping of carbon residue (a) and roasted mixture (b)

    圖  8  不同溫度下Al?H2O 的E?pH圖。(a)25 ℃;(b)50 ℃;(c)75 ℃;(d)100 ℃

    Figure  8.  E?pH diagram of Al?H2O at different temperatures: (a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 100 ℃

    圖  9  950 ℃時保溫時間與混合料質量損失的關系

    Figure  9.  Relationship between the holding time and mass loss of the mixture at 950 ℃

    a—m[Na2CO3]=7.5 g, m[carbon residue]=3 g; b—m[Na2CO3]=7 g, m[carbon residue]=3.5 g; c—m[Na2CO3]=5.25 g, m[carbon residue]=5.25 g

    圖  10  焙燒2 h時焙燒溫度與混合料的質量損失的關系

    Figure  10.  Relationship between the roasting temperature and mass loss of the mixture at 2 h roasting

    a—m[Na2CO3]=7.5 g, m[carbon residue]=3 g; b—m[Na2CO3]=7 g, m[carbon residue]=3.5 g; c—m[Na2CO3]=5.25 g; m[carbon residue]=5.25 g

    圖  11  浸出時間與炭粉純度的關系

    Figure  11.  Relationship between leaching time and carbon powder purity

    圖  12  試驗Ⅶ(a)和Ⅷ(b)所得炭粉的X射線衍射物相分析

    Figure  12.  X-ray diffraction phase analysis of carbon powder obtained in Ⅶ(a) and Ⅷ(b)

    圖  13  試驗Ⅷ所得冰晶石的X射線衍射物相分析

    Figure  13.  X-ray diffraction phase analysis of cryolite obtained in Experiment Ⅷ

    圖  14  試驗Ⅷ所得炭粉(a, b)和冰晶石(c, d)的SEM圖

    Figure  14.  SEM images of carbon powder (a, b) and cryolite (c, d) obtained from test Ⅷ

    表  1  炭渣主要成分(質量分數)

    Table  1.   Main components of carbon residue %

    Sample
    number
    CNaAlFOKLiMgCaTotal
    Sample 130.116.5311.6933.550.110.0020.31.1493.422
    Sample 229.216.6710.9234.70.10.0020.331.2193.132
    下載: 導出CSV

    表  2  炭渣焙燒試驗參數及炭粉產物純度

    Table  2.   Roasting test parameters of carbon residue and purity of carbon powder

    TestComponentsRoasting temperature/
    Holding time/
    h
    The quality of carbon
    powder/g
    Purity of carbon powder/
    %
    Exp. Ⅰm[carbon residue] = 10 g, m[Na2CO3] = 25 g80015.5155
    Exp. Ⅱm[carbon residue] = 10 g, m[Na2CO3] = 25 g85015.2856
    Exp. Ⅲm[carbon residue] = 10 g, m[Na2CO3] = 25 g9000.53.9970
    Exp. Ⅳm[carbon residue] = 10 g, m[Na2CO3] = 25 g90013.6972
    Exp. Ⅴm[carbon residue] = 10 g, m[Na2CO3] = 25 g9001.53.7173
    Exp. Ⅵm[carbon residue] = 10 g, m[Na2CO3] = 25 g90023.5276
    Exp. Ⅶm[carbon residue] = 10 g, m[Na2CO3] = 25 g95013.4884
    Exp. Ⅷm[carbon residue] = 10 g, m[Na2CO3] = 25 g95022.9589
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Grjothem K, Welch B J. Aluminium smelter technology. Dusseldorf: Aluminium-Verlag, 1980
    [2] Xu H F, Fan L J, Zhang Y, et al. Analysis of sources of carbon residue and its control methods. Carbon Tech, 2009, 28(6): 41 doi: 10.3969/j.issn.1001-3741.2009.06.009

    許海飛, 樊利軍, 張陽, 等. 炭渣來源及其控制方法分析. 炭素技術, 2009, 28(6):41 doi: 10.3969/j.issn.1001-3741.2009.06.009
    [3] Hume S M, Utley M R, Welch B J. The influence of low current densities on anode performance. Light Metals. 1992: 687
    [4] Zhao D F, Yang Y Z. Analysis on the harmfulness of carbon slag in aluminum electrolysis production. Sci Technol Innov Her, 2013, 10(10): 154 doi: 10.3969/j.issn.1674-098X.2013.10.100

    趙東方, 楊玉卓. 探析鋁電解生產中碳渣的危害性. 科技創新導報, 2013, 10(10):154 doi: 10.3969/j.issn.1674-098X.2013.10.100
    [5] Zhang B S. The harm of carbon slag in aluminum electrolysis production. Xinjiang Nonferrous Metals, 2013, 36(1): 70

    張保社. 碳渣在鋁電解生產中的危害. 新疆有色金屬, 2013, 36(1):70
    [6] Li C Z. Causes of carbon slag formation in aluminum electrolysis production and its treatment methods. Qinghai Sci Technol, 2008, 15(4): 74 doi: 10.3969/j.issn.1005-9393.2008.04.032

    李長珍. 鋁電解生產中炭渣生成的原因及其處理方法. 青海科技, 2008, 15(4):74 doi: 10.3969/j.issn.1005-9393.2008.04.032
    [7] Wen L G, Sun H L, Li J Y. Synthetic analysis of the recovery and utilization for carbon slag from aluminium electrolysis in Qingtongxia aluminum plant in Ningxia. Inn Mong Petrochem Ind, 2019, 45(6): 13 doi: 10.3969/j.issn.1006-7981.2019.06.005

    溫鋁剛, 孫海璐, 李京彥. 寧夏青銅峽鋁廠鋁電解炭渣回收利用綜合分析. 內蒙古石油化工, 2019, 45(6):13 doi: 10.3969/j.issn.1006-7981.2019.06.005
    [8] Lu H M, Qiu Z X. Comprehensive utilization of carbonaceous slag from aluminium reduction cells. Multipurp Util Miner Resour, 1997(2): 45

    盧惠民, 邱竹賢. 鋁電解槽炭渣的綜合利用研究. 礦產綜合利用, 1997(2):45
    [9] Liu Y Q, Ji F W. Hazard analysis and control of carbon slag in aluminum electrolysis production. World Nonferrous Met, 2013(12): 30

    劉永強, 姬鳳武. 鋁電解生產中炭渣的危害分析與控制. 世界有色金屬, 2013(12):30
    [10] Huang Y K, Xiao H Z, Peng D Q. Formation and distribution of carbon slag in aluminum electrolyte melt and its separation measures. Light Met, 1994(10): 23

    黃英科, 肖輝照, 彭德泉. 鋁電解質熔液中碳渣的形成和分布及其分離措施. 輕金屬, 1994(10):23
    [11] Jin R Y, Wang Y M. The cause of carbon residue increase in aluminum plant and its prevention. Shanghai Met (Nonferrous Fascicule), 1992, 13(4): 54

    金瑞玉, 王玉明. 鋁廠碳渣增多的原因及其預防. 上海金屬(有色分冊), 1992, 13(4):54
    [12] Xie Y M. Impact of carbon residue to the aluminum electrolysis production. Gansu Metall, 2014, 36(4): 32 doi: 10.3969/j.issn.1672-4461.2014.04.010

    謝葉明. 碳渣對鋁電解生產的影響. 甘肅冶金, 2014, 36(4):32 doi: 10.3969/j.issn.1672-4461.2014.04.010
    [13] Peng J P, Liang C, Di Y Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaCl Molten Salt Extraction Method: China Patent, CN110938838A. 2020-3-31

    彭建平, 梁誠, 狄躍忠, 等. 利用NaCl熔鹽萃取法處理鋁電解槽陽極炭渣的方法: 中國專利, CN110938838A. 2020-3-31
    [14] Peng J P, Liang C, Wei Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaOH Molten Salt Method: China Patent, CN110775955A. 2020-2-11

    彭建平, 梁誠, 魏征, 等. 一種利用NaOH熔鹽法處理鋁電解槽陽極炭渣的方法: 中國專利, CN110775955A. 2020-2-11
    [15] Zhao R M, Yu Z L, Li S H. The recycling experimental study on aluminum electrolysis carbon residues. Yunnan Metall, 2015, 44(1): 15 doi: 10.3969/j.issn.1006-0308.2015.01.004

    趙瑞敏, 于站良, 李順華. 鋁電解炭渣回收利用實驗研究. 云南冶金, 2015, 44(1):15 doi: 10.3969/j.issn.1006-0308.2015.01.004
    [16] Kang N. Flotation of aluminum electrolytic carbon slag. Light Met, 2002(6): 42 doi: 10.3969/j.issn.1002-1752.2002.06.012

    康寧. 鋁電解碳渣的浮選. 輕金屬, 2002(6):42 doi: 10.3969/j.issn.1002-1752.2002.06.012
    [17] Xue W Q, Hou X. Recycling and utilizing technology on aluminium electrolytic carbon dross. World Nonferrous Met, 2002(8): 35

    薛伍芹, 侯新. 鋁電解炭渣回收利用技術. 世界有色金屬, 2002(8):35
    [18] Mei X Y, Li J, Yu Z L. The research on recycling carbon residue by Floatation process. Light Met, 2016(4): 28

    梅向陽, 李俊, 于站良. 浮選法回收利用碳渣實驗研究. 輕金屬, 2016(4):28
    [19] Chai D P, Hou G H, Huang H B. Experimental study on the treatment of aluminum reduction carbon residue by vacuum metallurgy. Light Met, 2016(4): 25

    柴登鵬, 候光輝, 黃海波. 真空冶金法處理鋁電解碳渣試驗研究. 輕金屬, 2016(4):25
    [20] Feng N X, Wang Y W. Method for Separating and Recovering carbon and Electrolyte Components from Carbon-containing Solid Waste Material of Molten Aluminum Electrolysis: China Patent, CN104894600A. 2015-9-9

    馮乃祥, 王耀武. 一種從鋁熔鹽電解含炭固體廢料中分離回收炭和電解質組分的方法: 中國專利, CN104894600A. 2015-9-9
    [21] Chen X P, Zhao L, Luo Z S. Study on recycling process for electrolyte in carbon dust from reduction cells. Light Met, 2009(12): 21

    陳喜平, 趙淋, 羅鐘生. 回收鋁電解炭渣中電解質的研究. 輕金屬, 2009(12):21
    [22] Chen X P, Li W X, Wang Y. Method for Extracting Electrolyte from Carbon Slag of Aluminum Electrolysis Anode: China Patent, CN101063215A. 2007-10-31

    陳喜平, 李旺興, 王玉. 一種提取鋁電解陽極碳渣中電解質的方法: 中國專利, CN101063215A. 2007-10-31
    [23] Li W X, Chen X P, Liu F Q, et al. Process for Recovering Fluoride Salt from Aluminium Electrolyzing Carbon Slag: China Patent, CN1587028A. 2005-3-2

    李旺興, 陳喜平, 劉鳳琴, 等. 一種回收鋁電解陽極碳渣中氟化鹽的方法: 中國專利, CN1587028A. 2005-3-2
    [24] Li M J, Shi Z H, Zheng C F, et al. Investigation into direct synthesizing cryolite by sodium aluminate. Conserv Util Miner Resour, 2008(4): 36 doi: 10.3969/j.issn.1001-0076.2008.04.010

    李民菁, 史智慧, 鄭朝付, 等. 鋁酸鈉溶液直接合成冰晶石的研究. 礦產保護與利用, 2008(4):36 doi: 10.3969/j.issn.1001-0076.2008.04.010
  • 加載中
圖(14) / 表(2)
計量
  • 文章訪問數:  2678
  • HTML全文瀏覽量:  420
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-30
  • 網絡出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回