<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

硼摻雜鎳酸鋰的改性研究

張寧 厲英 倪培遠

張寧, 厲英, 倪培遠. 硼摻雜鎳酸鋰的改性研究[J]. 工程科學學報, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
引用本文: 張寧, 厲英, 倪培遠. 硼摻雜鎳酸鋰的改性研究[J]. 工程科學學報, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
ZHANG Ning, LI Ying, NI Pei-yuan. Enhanced electrochemical performance of LiNiO2 by B doping[J]. Chinese Journal of Engineering, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
Citation: ZHANG Ning, LI Ying, NI Pei-yuan. Enhanced electrochemical performance of LiNiO2 by B doping[J]. Chinese Journal of Engineering, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004

硼摻雜鎳酸鋰的改性研究

doi: 10.13374/j.issn2095-9389.2020.11.30.004
基金項目: 國家自然科學基金資助項目(51834004,51774076,51704062)
詳細信息
    通訊作者:

    E-mail:liying@mail.neu.edu.cn

  • 中圖分類號: TM912.9

Enhanced electrochemical performance of LiNiO2 by B doping

More Information
  • 摘要: 采用共沉淀法制備了Ni(OH)2前驅體材料,通過高溫固相法制備了LiNiO2和B摻雜LiNiO2(B的摩爾分數為1%),利用X射線衍射(XRD)、里特維爾德(Rietveld)精修、掃描電子顯微鏡(SEM)、恒流充放電測試、循環伏安(CV)和電化學阻抗譜(EIS)對材料的晶體結構、表面形貌和電化學性能進行了系統性表征。XRD和Rietveld精修結果表明,LiNiO2和B摻雜LiNiO2均具有良好的層狀結構,B因為占據在過渡金屬層和鋰層的四面體間隙位而導致摻雜后略微增大材料的晶格參數和晶胞體積,同時增大了LiO6八面體的間距,進而促進鋰離子運輸。由于摻雜的B的摩爾分數僅為1%,LiNiO2和B摻雜LiNiO2均表現為直徑10 μm左右的多晶二次顆粒,且一次顆粒晶粒尺寸沒有明顯區別。長循環數據表明B摻雜可以有效提高材料的循環容量保持率,經100次循環后,B摻雜樣品在40 mA·g?1 電流下的容量保持率為77.5%,優于未摻雜樣品(相同條件下容量保持率為66.6%)。微分容量曲線和EIS分析表明B摻雜可以有效抑制循環過程中的阻抗增長。

     

  • 圖  1  LiNiO2和B摻雜LiNiO2的XRD圖譜和精修圖譜

    Figure  1.  X-ray diffraction patterns and fitting results of LiNiO2 and B-doped LiNiO2

    圖  2  掃描電鏡照片。(a)LiNiO2;(b)B摻雜LiNiO2

    Figure  2.  SEM images of: (a) LiNiO2; (b) B doped LiNiO2

    圖  3  LiNiO2和B摻雜LiNiO2的(a)比容量曲線,(b)微分容量曲線,(c)首圈CV,(d)第2圈CV

    Figure  3.  (a) Voltage vs specific capacity, (b) differential capacity vs cell voltage, (c) CV for the 1st cycle, and (d) CV for the 2nd cycles of LiNiO2 and B-doped LiNiO2

    圖  4  LiNiO2和B摻雜LiNiO2的在30 ℃,3.0~4.3 V的循環壽命曲線

    Figure  4.  Cycle life of LiNiO2 and B-doped LiNiO2 at 30 ℃ at voltage at 3.0–4.3 V

    圖  5  (a)LiNiO2,(b)B摻雜LiNiO2在第2、第54,和第106次循環的微分容量曲線變化;(c)LiNiO2和B摻雜LiNiO2在第106次循環的微分容量曲線的對比圖;(d)循環前后EIS圖譜

    Figure  5.  Differential capacity vs cell voltage of (a) LiNiO2 and (b) B-doped LiNiO2 at the 2nd, 54th, and 106th cycles; (c) comparison of differential capacity vs cell voltage at the 106th cycle; (d) electrochemical impedance spectroscopy before and after the cycling of LiNiO2 and B-doped LiNiO2

    表  1  用Rietica得到的晶格參數信息

    Table  1.   Lattice parameters and fitting results using Rietica

    Samplea/nmc/nmUnit cell volume/nm3Ni in Li layer/%LiO6 slab/nmNiO6 slab/nmI003/I104Bragg-factor
    LiNiO20.287691.419910.1017732.00.25670.21661.152.07
    B-doped LiNiO20.287731.420000.1018092.60.25810.21531.121.96
    下載: 導出CSV

    表  2  用ZView擬合得到的循環前后的阻抗值

    Table  2.   Electrochemical impedance spectroscopy fitting results using ZView (Ω·cm2)

    ConditionSampleRsRcRct
    Before cyclesLiNiO23.710.920.1
    B doped LiNiO24.114.424.2
    After cyclesLiNiO211.6125.1378.5
    B doped LiNiO210.4116.0235.2
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xu G L, Liu X, Daali A, et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv Funct Mater, 2020, 30(46): 2004748 doi: 10.1002/adfm.202004748
    [2] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
    [3] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
    [4] Deng T, Fan X L, Cao L S, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule, 2019, 3(10): 2550 doi: 10.1016/j.joule.2019.08.004
    [5] Xu C, M?rker K, Lee J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater, 2021, 20(1): 84 doi: 10.1038/s41563-020-0767-8
    [6] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22

    安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22
    [7] Wang L C, Li L, Wang H Y, et al. Fast capacitive energy storage and long cycle life in a deintercalation-intercalation cathode material. Small, 2020, 16(13): 1906025 doi: 10.1002/smll.201906025
    [8] Li J, Harlow J, Stakheiko N, et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc, 2018, 165(11): A2682 doi: 10.1149/2.0491811jes
    [9] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
    [10] Li H Y, Cormier M, Zhang N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc, 2019, 166(4): A429 doi: 10.1149/2.1381902jes
    [11] Li H Y, Zhang N, Li J, et al. Updating the structure and electrochemistry of LixNiO2 for 0≤x≤1. J Electrochem Soc, 2018, 165(13): A2985 doi: 10.1149/2.0381813jes
    [12] Liu A, Zhang N, Li H Y, et al. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for Lithium ion batteries. J Electrochem Soc, 2019, 166(16): A4025 doi: 10.1149/2.1101915jes
    [13] Ohzuku T, Ueda A, Kouguchi M. Synthesis and characterization of LiAl1/4Ni3/4O2 (R3-m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc, 1995, 142(12): 4033 doi: 10.1149/1.2048458
    [14] Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154
    [15] Steiner J, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials. ACS Appl Mater Interfaces, 2019, 11(41): 37885 doi: 10.1021/acsami.9b14729
    [16] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2?x/2Mn0.6?x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources, 2007, 167(1): 178 doi: 10.1016/j.jpowsour.2007.01.070
    [17] Ryu H H, Park N Y, Yoon D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1–xy]O2 for next lithium batteries. Adv Energy Mater, 2020, 10(25): 2000495 doi: 10.1002/aenm.202000495
    [18] Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces, 2020, 12(47): 52826 doi: 10.1021/acsami.0c16648
    [19] Pan L C, Xia Y G, Qiu B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1–xBxO2 as cathode materials for lithium-ion batteries. J Power Sources, 2016, 327: 273 doi: 10.1016/j.jpowsour.2016.07.064
    [20] Yang W, Xiang W, Chen Y X, et al. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces, 2020, 12(9): 10240 doi: 10.1021/acsami.9b18542
    [21] Huang B H, Liu D Q, Zhang L H, et al. An efficient synthetic method to prepare high-performance Ni-rich LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. ACS Appl Energy Mater, 2019, 2(10): 7403 doi: 10.1021/acsaem.9b01414
    [22] Nie Y, Xiao W, Miao C, et al. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochimica Acta, 2020, 353: 136477 doi: 10.1016/j.electacta.2020.136477
    [23] Yao L, Li Y P, Gao X P, et al. Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater, 2021, 36: 179 doi: 10.1016/j.ensm.2020.12.026
    [24] Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/artificial graphite cells after formation and after cycling. J Electrochem Soc, 2020, 167(12): 120507 doi: 10.1149/1945-7111/abaa1b
    [25] Keefe A S, Buteau S, Hill I G, et al. Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J Electrochem Soc, 2019, 166(14): A3272 doi: 10.1149/2.0541914jes
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數:  1701
  • HTML全文瀏覽量:  553
  • PDF下載量:  125
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-30
  • 網絡出版日期:  2021-03-05
  • 刊出日期:  2021-08-25

目錄

    /

    返回文章
    返回