-
摘要: 采用共沉淀法制備了Ni(OH)2前驅體材料,通過高溫固相法制備了LiNiO2和B摻雜LiNiO2(B的摩爾分數為1%),利用X射線衍射(XRD)、里特維爾德(Rietveld)精修、掃描電子顯微鏡(SEM)、恒流充放電測試、循環伏安(CV)和電化學阻抗譜(EIS)對材料的晶體結構、表面形貌和電化學性能進行了系統性表征。XRD和Rietveld精修結果表明,LiNiO2和B摻雜LiNiO2均具有良好的層狀結構,B因為占據在過渡金屬層和鋰層的四面體間隙位而導致摻雜后略微增大材料的晶格參數和晶胞體積,同時增大了LiO6八面體的間距,進而促進鋰離子運輸。由于摻雜的B的摩爾分數僅為1%,LiNiO2和B摻雜LiNiO2均表現為直徑10 μm左右的多晶二次顆粒,且一次顆粒晶粒尺寸沒有明顯區別。長循環數據表明B摻雜可以有效提高材料的循環容量保持率,經100次循環后,B摻雜樣品在40 mA·g?1 電流下的容量保持率為77.5%,優于未摻雜樣品(相同條件下容量保持率為66.6%)。微分容量曲線和EIS分析表明B摻雜可以有效抑制循環過程中的阻抗增長。Abstract: The application markets for portable electronics, battery-operated electric vehicles, and large-scale energy-storage grids have been expanding rapidly for the past ten years, which has attracted massive attention to the investigation and development of batteries with high energy density, long cycle life, high safety, and low cost. A commonly used lithium-ion battery consists of intercalation-type materials, such as LiCoO2 as cathode and graphite as an anode. Owing to technical difficulties, including high cost, low stability, and the poor safety of Li, the large-scale application of the high-energy Li anode is still premature. A more common strategy than the one mentioned above for improving the energy density of Li-ion batteries is to develop a cathode material with high specific capacity and low cost, such as LiNi1–x–yCoxMnyO2 (NCM) and LiNi1–x–yCoxAlyO2 (NCA). Among the NCMs and NCAs, Co is more expensive and less abundant than Ni, Mn, and Al. Presently, high-nickel, low-cobalt NCMs, and NCAs have attracted huge attention as suitable cathodes for both academic and industrial purposes. LNiO2 can be regarded as the Ni content increasing to 100% for NMCs and NCAs, which stood as the “holy grail” of layered cathodes. This study aims to investigate the structural and electrochemical stability of LiNiO2 and B-doped LiNiO2. In this study, Ni(OH)2 was synthesized by a coprecipitation method using a continuous stirred tank reactor (CSTR). LiNiO2 and B-doped LiNiO2 were synthesized by high-temperature solid-state sintering. The crystal structure, surface morphology, and electrochemical performance were investigated by X-ray diffraction (XRD), Rietveld refinement, scanning electron microscopy (SEM), constant current charge–discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). XRD and Rietveld refinement results indicate that B-doping could slightly increase the lattice parameters and unit cell volume due to the occupancy of B in the tetrahedral site. Meanwhile, the LiO6 slab distance increases, consequently favoring the transportation of Li+ during (de)-intercalation. SEM images suggest that LiNiO2 and B-doped LiNiO2 consist of primary grains with a similar size, and the secondary particle in both samples has an average size of 10 μm. Long-term cycling data show that B-doping could improve capacity retention. The capacity retention at 40 mA·g?1 is 77.5% for the B-doped sample, whereas a value of 66.6% is obtained for LiNiO2. The dQ/dV vs V curves and EIS results suggest the suppression of impedance growth by B-doping.
-
Key words:
- boron /
- doping /
- LiNiO2 /
- positive electrode material /
- lithium-ion batteries
-
圖 5 (a)LiNiO2,(b)B摻雜LiNiO2在第2、第54,和第106次循環的微分容量曲線變化;(c)LiNiO2和B摻雜LiNiO2在第106次循環的微分容量曲線的對比圖;(d)循環前后EIS圖譜
Figure 5. Differential capacity vs cell voltage of (a) LiNiO2 and (b) B-doped LiNiO2 at the 2nd, 54th, and 106th cycles; (c) comparison of differential capacity vs cell voltage at the 106th cycle; (d) electrochemical impedance spectroscopy before and after the cycling of LiNiO2 and B-doped LiNiO2
表 1 用Rietica得到的晶格參數信息
Table 1. Lattice parameters and fitting results using Rietica
Sample a/nm c/nm Unit cell volume/nm3 Ni in Li layer/% LiO6 slab/nm NiO6 slab/nm I003/I104 Bragg-factor LiNiO2 0.28769 1.41991 0.101773 2.0 0.2567 0.2166 1.15 2.07 B-doped LiNiO2 0.28773 1.42000 0.101809 2.6 0.2581 0.2153 1.12 1.96 表 2 用ZView擬合得到的循環前后的阻抗值
Table 2. Electrochemical impedance spectroscopy fitting results using ZView
(Ω·cm2) Condition Sample Rs Rc Rct Before cycles LiNiO2 3.7 10.9 20.1 B doped LiNiO2 4.1 14.4 24.2 After cycles LiNiO2 11.6 125.1 378.5 B doped LiNiO2 10.4 116.0 235.2 www.77susu.com -
參考文獻
[1] Xu G L, Liu X, Daali A, et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv Funct Mater, 2020, 30(46): 2004748 doi: 10.1002/adfm.202004748 [2] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0 [3] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1 [4] Deng T, Fan X L, Cao L S, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule, 2019, 3(10): 2550 doi: 10.1016/j.joule.2019.08.004 [5] Xu C, M?rker K, Lee J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater, 2021, 20(1): 84 doi: 10.1038/s41563-020-0767-8 [6] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22安富強, 趙洪量, 程志, 等. 純電動車用鋰離子電池發展現狀與研究進展. 工程科學學報, 2019, 41(1):22 [7] Wang L C, Li L, Wang H Y, et al. Fast capacitive energy storage and long cycle life in a deintercalation-intercalation cathode material. Small, 2020, 16(13): 1906025 doi: 10.1002/smll.201906025 [8] Li J, Harlow J, Stakheiko N, et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc, 2018, 165(11): A2682 doi: 10.1149/2.0491811jes [9] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827 [10] Li H Y, Cormier M, Zhang N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc, 2019, 166(4): A429 doi: 10.1149/2.1381902jes [11] Li H Y, Zhang N, Li J, et al. Updating the structure and electrochemistry of LixNiO2 for 0≤x≤1. J Electrochem Soc, 2018, 165(13): A2985 doi: 10.1149/2.0381813jes [12] Liu A, Zhang N, Li H Y, et al. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for Lithium ion batteries. J Electrochem Soc, 2019, 166(16): A4025 doi: 10.1149/2.1101915jes [13] Ohzuku T, Ueda A, Kouguchi M. Synthesis and characterization of LiAl1/4Ni3/4O2 (R3-m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc, 1995, 142(12): 4033 doi: 10.1149/1.2048458 [14] Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154 [15] Steiner J, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials. ACS Appl Mater Interfaces, 2019, 11(41): 37885 doi: 10.1021/acsami.9b14729 [16] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2?x/2Mn0.6?x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources, 2007, 167(1): 178 doi: 10.1016/j.jpowsour.2007.01.070 [17] Ryu H H, Park N Y, Yoon D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1–x–y]O2 for next lithium batteries. Adv Energy Mater, 2020, 10(25): 2000495 doi: 10.1002/aenm.202000495 [18] Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces, 2020, 12(47): 52826 doi: 10.1021/acsami.0c16648 [19] Pan L C, Xia Y G, Qiu B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1–xBxO2 as cathode materials for lithium-ion batteries. J Power Sources, 2016, 327: 273 doi: 10.1016/j.jpowsour.2016.07.064 [20] Yang W, Xiang W, Chen Y X, et al. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces, 2020, 12(9): 10240 doi: 10.1021/acsami.9b18542 [21] Huang B H, Liu D Q, Zhang L H, et al. An efficient synthetic method to prepare high-performance Ni-rich LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. ACS Appl Energy Mater, 2019, 2(10): 7403 doi: 10.1021/acsaem.9b01414 [22] Nie Y, Xiao W, Miao C, et al. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochimica Acta, 2020, 353: 136477 doi: 10.1016/j.electacta.2020.136477 [23] Yao L, Li Y P, Gao X P, et al. Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater, 2021, 36: 179 doi: 10.1016/j.ensm.2020.12.026 [24] Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/artificial graphite cells after formation and after cycling. J Electrochem Soc, 2020, 167(12): 120507 doi: 10.1149/1945-7111/abaa1b [25] Keefe A S, Buteau S, Hill I G, et al. Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J Electrochem Soc, 2019, 166(14): A3272 doi: 10.1149/2.0541914jes -